Flexible Handling of System Software for Mobile
Robots by Using a Module Loader Concept

Richard Bade, Manfred Deutscher-Tiemann and André Herms
University of Magdeburg
Institute for Distributed Systems
Uniplatz 2
39106 Magdeburg, Germany
Email: {ribade,deutscher,aherms}@ivs.cs.uni-magdglolgr

Abstract— This paper describes the module loader concept. PC 104
We successfully used this for the development of system software
for our mobile robots. The module loader allows for organizing

the software in modules. These can be loaded and removed at CAN Bus
runtime. We describe how this is done. Additionally we give some
examples on how to use the concept. Exemplified on our robot C 167 C 167 C 167

platforms we describe how to design and implement a modular
system architecture. | || e

S|..|A[S|.|A S|...| A

I. INTRODUCTION

Developing software for robots consists of writing code for
sensors, actuators and the controlling system. Commoelg us
architectures are microcontrollers for sensors, actaasmd

low level controlling parts communicating with a PC running auron [1] and the wheeled robot 8rT2 [2]. Although
high level tasks. _ _ they have different fields of operation, they base on a simila
Software development for these microcontrollers is NOfrgware platform. Basically it consists of a PC104 and one

mally a time consuming job. Commonly, the actual codingr more Siemens C167 microcontrollers [3], interconnected
is done inC by using the trial-and-error method. But in mos{ij3 3 CAN bus [4]. The PC runs high level tasks. The

cases itis the only possible way. There is also the problem thr167 microcontrollers are used to communicate with the
there is no efficient method to load the compiled software {oyrqware devices — sensors and actuators (see figure 1). We
the microcontroller. Even a small change in the source cogg, using different sets of sensors for both robots, e.aried
requires complete compiling and uploading of the softwargyrasonic, force and inclination sensors. The actuatorhé
Therefore, the development process is very extensive. YRYrT2 are two motors for driving, for the AURON there are

need a system, which should be modular, flexible, easy 3@ motors in sum - three for every leg, and three for the camera
use and efficient to handle microcontroller software. Theggaq.

requirements result in the development of our module loader the [auroON contains in all seven microcontrollers. To

We are currently using it in a productive environment 18 ple communication with the PC and between the micro-
develop and deploy system software for our various mobilgyroliers themselves they are identified by a unique numbe
robot platforms. It allows us to test new software compo®eninese IDs are automatically assigned once the system is

faster, which results in a more efficient development preceg ieq by a program running on the PC. As ther¢2 has

Additionally we got a more flexible runtime environment. st one microcontroller the assignment process is redtmed
Our paper is organized as follows. In Chapter Il we explalg]mmy assigning a fixed number to it.

the hardware the mobile robot platforms consists of and theAt the moment the microcontrollers do not run an operating
software we are running on it. Chapter Ill describes the r’rmd%

:) stem. To allow further extensions, we support the option
loader concept in detail — the structure of a module, tqg run PXROS[5]. The PC is running Linux. As a result

design, the components, and the loading process. Chapterv\}g have a two level system architecture: the Siemens C167

gives ideas and examples for applicational use and in the ngxe o controllers for low level tasks and the PC104 system fo
chapter we present our developed modules. In the last h level tasks and the application software

parts we compare our module loader to other concepts an
afterwards we conclude. I1l. M ODULE LOADER

Fig. 1. architecture of the mobile robot systems

Il. SYSTEM ARCHITECTURE In the following we describe the module loader in detail.
In this paper we concentrate on two mobile robots w@ur implementation is specific for the C167. But the concept
use for research and education: The six-legged walkingtrolman be applied to other processors, e.g. DSPs, without any

difficulties. managed by the PC. It maintains a list of all free memory and
First we define the notion of a module in our systenknows about the memory used by the modules.

Afterwards we discuss design goals and their results. Ther\Nhen loading a module. memory manacement is asked for
we explain the functionality of the components of the module 9 ' y 9

loader a suitable piece of memory. After loading, the memory area
' is marked as used by the module. This all happens without
A. Structure of a Module intervention of the microcontroller. For unloading the nueyn

We use the following definition: belonging to the module is marked as unused.

module: A program unit that is discrete and iden- 2) External Dynamic Linking:As described above a mod-
tifiable with respect to compiling, combining with yle is a compiler object file. Normally this is linked with etts
other modules, and loading. to form the application. As we want to add it at runtime the

Here we use the module definition for a piece of binary codiaking is done while the program is already running. This
resulting from a compiled set o€++ functions. We will is well known from the concept of dynamic linked libraries.
explain how this fulfils our module definition. It is possibleBut in contrast to our concept the code is loaded by the
to compile the functions independently, which results in application itself. The code is already on the same system
compiler object file. The modules can be loaded and combinasl the application. Here the module is inserted and removed
independently. How this is achieved will be explained in thigom the outside — from the PC.

following sections. edCommon to both methods is that the addresses in the

The module must be in a special structure. It can be plac .
X o . code have to always be corrected to reflect the final memory
at an arbitrary position in the memory. Therefore, it must hg" .. : . :
cation of the module. Theeslocation processs responsible

relocatable Thls means the addresses in t'he.complle.d CO?((;er this. With dynamic linked libraries the code is relochte
must not be fixed. The module must contain information f

r C
setting this addresses when the final position of the modﬁqg the application. H(_are the modules are not p_rocessed by the
) . microcontroller as this would cost too much time and could
is known. Fortunately, we already have such a format: t

X) i . rE)(?ock the system. So this is done externally on the PC. After
compiler object files mentioned above. The addresses a :
. o . - allocating memory for the module the offset for all addresse
not fixed after compilation. The linker modifies them when ~ "
X . . .) is adjusted. After that the relocated code can be transfeoe
creating the final binary. So the object files already fulfill a

the microcontroller.
our needs.

. With the method described so far, code can only be loaded.
B. Design Goals But it cannot interact with other modules. For this, it stibioé
The most important aspect in the design is the asymmetggle to call functions of other modules. This is possible tue
relation between PC and microcontroller. Compared to thige structure of the object files. If a function in an objec fil
C167 the PC system has enough CPU power and meme@gtesses a function or variable outside, the compiler gesser
for handling most tasks. Therefore, the PC should be usedgl® external reference. The address of the call and the name
do the most expensive operations. of the function is stored in the file. As the address is known
As a further requirement, modules should be loaded aR@m earlier loading, the code can be updated. This is exactl
removed at runtime. While the robot is still executing somghat the module loader does. It holds a symbol table for every
system critical tasks, the system task must not be stoppgglerocontrollers, which contains all names and addresses u
Furthermore, the loading process must not block the syst@ithe loaded modules. If an external reference is found, it
for times longer than a few microseconds. Otherwise somg|ooked up and the code is updated. With this method a

controller functions could fail its timing assertions. new module can use all variables and functions provided by
A high level of system independence is an additionghodules loaded before.

requirement. This enables us to change the operating system _
(e.g. to PXROS) on the microcontroller or to work on the pure 3) CAN-Hook: The module loader needs some piece of

hardware without modifying the module loader. software running on the microcontroller that does the dctua
) module loading. As we use no operating system, we cannot
C. Design Results rely on our current CAN driver interface. To make it work with
The design goals result in the following properties of tharbitrary drivers, we had to make the interface as portable a
module loader: possible. This requirement results in an very simple iateef

1) External Memory Managemen®s explained, the mi- It consists of a single function onlyt oader _do(char
crocontroller has no system software running on it. Thessfo = dat a) . If a CAN packet is received, this function is called
there is no memory management. But modules are loadsith a pointer to the data. The packet is processed and an
dynamically, which requires dynamic management of memoanswer is generated. This answer is stored in the buffengive
used by them. As we do not want to burden the microcontrollas argument. The CAN driver only has to deliver this packet
with this, we use arexternal memory managemeah the and wait for the next one arriving. This way it is really easy
PC system. So the memories of all client microcontrollees ato use any kind of CAN driver.

D. PC Part « If the return value reflects an error, the unloading process
is stopped.

modle loader, 1 performs nearly the Same actions as ou® e SYMboIs defined by the moduie are removed fom
- tp y the symbol table.

loader. For convenience we made our loader behave nearly .
) e The memory of the module is marked as unused.

the same as the already used one. The Linux loader uses the

commandsi nsnmod and r mod. The version for handling

modules for the C167 systems are calledsmod166 and £ Microcontroller Part

rmod166. The microcontroller runs a part of the module loader system
A call of the function looks like this: that is responsible for receiving data and performing tis&sa
i nsmpd166 -t 7 nynodul e. o paraml=0x1243 necessary for loading and activating the module. This pag w

In this example the moduleynodul e. o is uploaded to the kept as small and efficient as possible. We tried to isolate
microcontroller with the number seven. An optional modulthe smallest set of functionality needed. This results i@ th
parameter with the namgar antl is set to the valu@x1234. following three operations.

2) Parameters:When writing code like control algorithms, 1) Store data in memory.
most time is spent with tuning parameters. These are oftery) Ryn a function at a given position.
implemented as constants in the module code. Normally it3) Read data from memory.
has to be recompiled when changing the value. We provide
a smarter way of doing this. A module can have paramete
which can be set when uploading. In the program code th
appear as normal variables. In fact they are. For defining
parameter only a global variable with the same name has
be defined. Executing nsnod with an optionname-value

will set the variable to the given value. This allows for aywer
efficient development. IV. POSSIBLEAPPLICATIONS

E fact the last operation is not necessary for the normal

)eration of the module loader. But it adds some very useful
Lchtionality consuming only a few bytes of code. The whole
r%)dule loader part on the microcontroller consists of ordg 5
bytes of machine code.

3) Special Functions:Most modules require some initial- e most important reason for developing the module

ization after the upload. This is done by a special functiqgaqer is to shorten development cycles. But there are other
i nit_nodul e() which returns an integer. If found '”S'deapplications that benefit from it.

the module, it is called after the upload. A return value of
zero reflects that the initialization succeeded. Otheniee
loading of the module is canceled.

A similar function exists for unloading a module. Before Different fields of application need different propertiels o
removing the code, it must be assured that it is not in utlee controlling software. For example consider a walkirtgoto
anymore. This is done by the functiorenove _nodul e(). which has to go to a wall and drill a hole there [6]. This
It should try to stop the module. A return value of zero reflecincludes two different tasks — the dynamic walking and the
that this succeeded. Otherwise the module cannot be remowadtic holding of the tool. Both tasks require different dsn

4) The Complete Loading and Unloading Procesghe Of controller software to achieve optimal functionalityn©

loading of a module consists of the following steps: possibility would be to store two controller programs on the
microcontroller and switch between them. But for more tasks

» The size of the module is detected. A memory area b{ﬁis becomes cumbersome. It leads too many distinctions of

enough to hold the module is reserved. This results in"a
cases. The structure becomes more and more unmanageable.

memory offset, specifying the start of the memory area. . . .
y pecifying y The module loader provides a smarter way of doing this.

o The addresses in the module are relocated accordingltto” ; | the whol troll ft ¢ rungi
the determined offset. allows to replace the whole controller software at rurgim

. The binary image is transferred to the microcontroller. This results in the option to have a single controller forrgve

. If ¢ iven, th di | é?gk. The _different controll_er types remain independeheyl .
ad?lrjlé/tggrame ers are given, the corresponding values can be switched by unloading and loading of the correspgndin

« If a functioni ni t_modul e exists, it is called on the modules. In our example, there would be one controller gyste

microcontroller. The return value is transmitted to the Pé‘.)r walking and one for drilling. First the rol_Jot will load eh

« If the return value reflects an error, the allocated memoFr(ZOdUIeS for walking and use them for reaching the wall. After
is freed ’ that, these modules are unloaded and the modules for the

. The symbols of the module are merged with the symb rilling controller would be loaded. They provide the stati
table of the microcontroller ehavior, which the walking controller cannot.

' The advantage for the developer is that he can design

the controller for every task independently, minimizing th

« If the module contains a functioal eanup_nodul e, complexity. This method can also be applied to other parts of
it is called. the system.

A. Adapting Controlling Software at Runtime

The unloading is done as follows:

B. Overlay Technique of the output is implemented similar, too. Toetput stream

An important aspect when writing software for the micromoduleprovides the func_tionality to send messages from the
controllers is the very limited amount of memory availabld>167 to the PC. Our main use is for debugging purposes. As
This does not only limit the size of data structures used by need fractional numbers for some tasks but the C167 has
also the code size. One possible way to overcome thisN@ floating point unit, we had to achieve it in an other way.
the overlay technique. This was a common way of writinE'VSt we tried to use some floating point modules. But they
software for 8-bit processors. Commonly only small amount$€ 25 kByte RAM in total. We had too few memory left to
of the code are actively used. There exist many functiorss tt#t other tasks running. Furthermore, it was too expensive
are only responsible for the initialization of the hardware dué to the emulating algorithms. So we introduced fixe
data structures. Normally they run only once at startup.hgo POint module which encapsulates corresponding arithmetic
code can be removed after execution to reuse the memory gg@_ctlons. Overall, it is more efficient than the floating itoi
for data structures. emulation and uses only 6 kByte of RAM.

We used this approach for some initialization routinesyThe At this point the implementation is very hardware specific.
are running at startup for calibrating the legs of the wagkin*S YOU can see in figure 2 there are modules for both robot
robot (see section V joint calibration modulg. The code Platforms. _ .
is rather complex and in all it requires 12 kByte of RAM. We will descnbg the sqftwgre modules' for the mobile robot
As we only have 48 kByte of free RAM, this is significantP'atform LAURON in deta|l._F|rst the_zre exists a module — t_he
The code is a separate module that is loaded, executed hf#ron board module- which provides control of the basic
removed. This method could be applied too many parts of thardware the C167 is connected to. This includes the coaitrol

controlling software. the A/D converter and the shaft encoders but also the couitrol
- the joint and camera head motors. Furthermore, we developed
C. System Monitoring modules for controlling the AURON. First of all, there is the

In section I1I-E we mentioned an extra operation for readingint calibration module It is responsible for calibrating the
data from the microcontroller remotely. This operation wd€d joints. After calibration, thgint calibration modulecan be
added because it allows for additional functionality. Tinge removed as described in section IV-B. The calibration tesul
with the symbol table, we can read values of variables witfre stored in the.auron board moduleNow it is possible
out influencing the normal program execution. This way tH® control the legs with the help of theg control module

system can be observed and easily debugged. This module uses thint control moduleand thekinematics
_ moduleto move the joints of one leg according to its foot
D. Simple Remote Procedure Calls position. The gait controller on the PC sends to the C167

The interface of the microcontroller gives us a method afits how they should move the legs. Tleg control interface
calling functions at a custom location. This is used foringll moduleensures that the instructions are available for ltge
i ni t_nodul e andcl eanup_nodul e. But it can also be control module
used for other functions. The only restriction is that they The kinematics moduléias to do computations with high
cannot have parameters and must return an integer. Thpggcision. Therefore, it uses tfig point module Furthermore,
restrictions can be abolished by various means. Compldsere exists a&amera head control modylavhich is used to
return values may be stored in global variables that can bentrol the bias and the viewing direction of the camera head
read by the system monitoring (section IV-C). The value &fs well as aforce sensor modul@nd anultrasonic sensor
variables can be changed in a similar way. This allows us meodule which get data from the corresponding sensors.
store parameters in variables. All these modules, from the AURON as well as from the
This interface provides a functionality similar to otheKURT2 , are independently exchangeable. We first imple-
remote procedure calls. But it is not as transparent assither mented a simple joint controller for theAURON because we
return, no additional code is required on the microcorgroll wanted to get the robot walking as soon as possible. By now
we use a more complex joint controller to move the legs more
V. EVALUATION precisely. Therefore, just thint control modulehad to be
As we have seen in the previous chapter the module load#ianged. Also the development of an enhanced gait controlle
can be used for several scenarios. Now we explain varioois the PC introduced no problem. We only had to replace the
modules that we have developed when applying the modudg control moduleand theleg control interface moduldy
loader concept. These are our testbed to evaluate theifépsibnew ones.
and applicability of our concept to real-world examples. Our experience with the module loader so far showed that
As mentioned before we have two similar mobile robaising it encourages a structured design, because the gevelo
platforms. Therefore, it is useful to design modules that cas forced to implement one set of functionality as enedule
be used on both ones. So it is necessary to figure out what
they have in common. First, both robot systems have a CAN VI. RELATED WORK
bus. For using it we need a module — tben driver module Modular design is well known in software development.
— providing the CAN interface. Furthermore, the realizatioThere are many concepts and programming languages realiz-

Lauron shared modules Kurt2
lauron board joint calibration] motor calibration kurt2 board
CAN driver
camera head control| | leg control interface speed control interf.
output stream
ultrasonic sensor leg control speed control bumper sensor
- - fix point -

force sensor kinematics odometry infrared sensor

inclination sensor joint control

Fig. 2. overview of the developed modules fordrON and KurRT2

ing it. Anyway, this mostly results in modules at source code The overlay concept as described for the module loader also
level. Their goal is a better software design. On the othadha aims to save memory used by program code. But the overlay
we concentrate on flexible handling of already written codprocess is different as it is done externally by the module
Especially in the context of robot programming such systertsader.

seems to be rarely used. .
D. Remote Debugging

A. Modular Controller Architecture The functionality of the module loader is similar to the
remote interface of debuggers like the GDB [11]. It can be
ksed to load binary code to a client system, and it also

for controlling robots and other kind of hardwaf@], [8]. It has functions for setting and reading variable values. The

has been used to develop the controller software for sevefijference is that the code can only be loaded at once. The
mobile robots like the BURON. The system consists ofinterface is not as efficient as it depends on a plain text
modules that are connected via a unified interface. ThisvalloProtocol via serial interface [12]. We first considered t@ us

a very restricted but clean way of implementing componem@is interface for our programming. But it was too slow andl no

Unfortunately, modules exists only at source code levelp- reflexible enough. It also has additional unused functiopdike

resented byC++ classes. Compilation results in a monolithiSetting breakpoints. This costs additional memory we canno
binary that is loaded as a whole. We considered to use it ffa'®:

our development, but the system was too static and inflexigle j7aAG Interface

for our needs.

The Modular Controller ArchitectureMCA is a modular,
network transparent and realtime capable C/C++ framewor

A possible alternative to the module loader is the JTAG
Interface [13]. The JTAG Interface standard was defined in
o) . 1990 by the Joint Test Action Group. It allows testing and

The most similar system is the module loader of the LinuX,nqlling of a microprocessor via a five-pin serial inte.
operating system [9]. It is normally used for loading devicgqiorola invented a similar method — the Background De-
drivers. We .tr|ed to mimic the user interface gnd functiggal bugging Mode (BDM) [14]. But it is available for their own
The main difference is that the Linux operating system loagicroprocessors only. With these methods it is possible to
the modules itself, while we do it from an external system. upload binary code to the processor, but it is more complex as
you have to write directly to the processor registers. Tédsls
to the problem that the implementation of sucls@tware

The overlay technique was a common way of making largeaderis hardware specific. Another disadvantage is the speed
programs fit into small memory. Especially in the era off the interface. It is limited to the speed of the serial bitss
8-bit computers, this was commonly used. Normally it i too slow for our needs.
not needed anymore for typical personal computers. Overlay
allow different parts of the program to share the same memaory
space. Only the overlay that is currently in use must beIn this paper, we describe the concept and use of our module
loaded. The others remain on disk and are loaded as neededder. It allows us to handle the controller software of our
Programming overlays can be a difficult task. Only a fewobots in a efficient and flexible way. The software of the
compilers (like [10]) support them directly. So assemblanicrocontrollers consist of several discrete modules.s€&he
programming might be necessary. The loading must also ¢&n be loaded at runtime. We describe how the module loader
triggered manually inside of the code. achieves this. Furthermore, we give examples on how the

B. Linux Module Loader

C. Overlay Technique

VIl. CONCLUSION

resulting functionality can be practically used. The medul
used on our robots are also described. This concept can

applied to other systems, too. They could also benefit fro

this.

(1]

(2]

(3]

(4]
(5]

REFERENCES

B. GaRmann, K.-U. Scholl, and K. Berns, “Locomotion of Laurll|
in Rough Terrain,” inint. Conference on Advanced Mechatronidaly
2001, como, Italy.

R. Worst and F. Kirchner, “KURT2 - Eine mobile Plattformrfidie
Robotikforschung,” inRobotik 2002: Leistungsstand, Anwendunge

b
Bl
8]
(0]

(10]
(11]

Visionen, Trends VDI-Verlag, June 2002, pp. 389-394, iSBN 3-18[112]

091679-6.

C167CR User's Manual, 16-Bit Single-Chip Microcontro|lénfineon
Technologies AG, 2000, munic, Germany.

CAN Specification Version 2.Robert Bosch GmbH, 1991, stuttgart,
Germany.
PXROS, “Project
rt.com/pxros.html.

Homepage,” June 2004, http://www.héght

[6] T. Ihme, “Posture control and distributed force sensiog technical

applications of walking robots,” ifProceedings of the 11th Conference

(13]

(14]

on Advanced Robotics, ICAR 200&l. 2, Jun 30 — Jul 3 2003, pp.
1032-1037, ISBN: 972-96889-8-2.

Modular Controller Architectur Version 2,
http://mca2.sourceforge.net/.

K.-U. Scholl, J. Albinez, and B. Gassmann, “MCA - an expable
modular controller architecture,” i8rd Real-Time Linux Workshop
2001, milano, Italy.

M. Beck et al, Linux-Kernel-Programmierung2nd ed.
Wesley, 1994.

Homepage - Borland developer netwofintique Software: Turbo Pascal
v3.02 jun 2004, http://bdn.borland.com/museum/.
Homepage GDB: The GNU Project
http://www.gnu.org/software/gdb/gdb.html.

B. Gatliff, “Implementing a Remote Debugging Agent for GDB
http://billgatliff.com/articles/gnu/gdb-agent.pdf, cfe Rep., May 2004.
Joint Test Action Group (JTAG)JEEE Standard Test Access Port
and Boundary-Scan Architectyrénstitute of Electrical and Electronic
Engineers (IEEE), New York, Mar 21 1990, |IEEE Std. 1149.94.9

S. Howard A Background Debugging Mode Driver Package for Modular
Microcontrollers Motorola, Motorola Literature Distribution, doc. no.:
AN1230/D.

“Project Homage,”

Addison-

Debugger

