
Flexible Handling of System Software for Mobile
Robots by Using a Module Loader Concept

Richard Bade, Manfred Deutscher-Tiemann and André Herms
University of Magdeburg

Institute for Distributed Systems
Uniplatz 2

39106 Magdeburg, Germany
Email: {ribade,deutscher,aherms}@ivs.cs.uni-magdeburg.de

Abstract— This paper describes the module loader concept.
We successfully used this for the development of system software
for our mobile robots. The module loader allows for organizing
the software in modules. These can be loaded and removed at
runtime. We describe how this is done. Additionally we give some
examples on how to use the concept. Exemplified on our robot
platforms we describe how to design and implement a modular
system architecture.

I. I NTRODUCTION

Developing software for robots consists of writing code for
sensors, actuators and the controlling system. Commonly used
architectures are microcontrollers for sensors, actuators and
low level controlling parts communicating with a PC running
high level tasks.

Software development for these microcontrollers is nor-
mally a time consuming job. Commonly, the actual coding
is done inC by using the trial-and-error method. But in most
cases it is the only possible way. There is also the problem that
there is no efficient method to load the compiled software to
the microcontroller. Even a small change in the source code
requires complete compiling and uploading of the software.
Therefore, the development process is very extensive. You
need a system, which should be modular, flexible, easy to
use and efficient to handle microcontroller software. These
requirements result in the development of our module loader.

We are currently using it in a productive environment to
develop and deploy system software for our various mobile
robot platforms. It allows us to test new software components
faster, which results in a more efficient development process.
Additionally we got a more flexible runtime environment.

Our paper is organized as follows. In Chapter II we explain
the hardware the mobile robot platforms consists of and the
software we are running on it. Chapter III describes the module
loader concept in detail – the structure of a module, the
design, the components, and the loading process. Chapter IV
gives ideas and examples for applicational use and in the next
chapter we present our developed modules. In the last two
parts we compare our module loader to other concepts and
afterwards we conclude.

II. SYSTEM ARCHITECTURE

In this paper we concentrate on two mobile robots we
use for research and education: The six-legged walking robot

Fig. 1. architecture of the mobile robot systems

LAURON [1] and the wheeled robot KURT2 [2]. Although
they have different fields of operation, they base on a similar
hardware platform. Basically it consists of a PC104 and one
or more Siemens C167 microcontrollers [3], interconnected
via a CAN bus [4]. The PC runs high level tasks. The
C167 microcontrollers are used to communicate with the
hardware devices – sensors and actuators (see figure 1). We
are using different sets of sensors for both robots, e.g. infrared,
ultrasonic, force and inclination sensors. The actuators in the
KURT2 are two motors for driving, for the LAURON there are
21 motors in sum - three for every leg, and three for the camera
head.

The LAURON contains in all seven microcontrollers. To
enable communication with the PC and between the micro-
controllers themselves they are identified by a unique number.
These IDs are automatically assigned once the system is
started by a program running on the PC. As the KURT2 has
just one microcontroller the assignment process is reducedto
simply assigning a fixed number to it.

At the moment the microcontrollers do not run an operating
system. To allow further extensions, we support the option
to run PXROS[5]. The PC is running Linux. As a result
we have a two level system architecture: the Siemens C167
microcontrollers for low level tasks and the PC104 system for
high level tasks and the application software.

III. M ODULE LOADER

In the following we describe the module loader in detail.
Our implementation is specific for the C167. But the concept
can be applied to other processors, e.g. DSPs, without any



difficulties.
First we define the notion of a module in our system.

Afterwards we discuss design goals and their results. Then
we explain the functionality of the components of the module
loader.

A. Structure of a Module

We use the following definition:

module: A program unit that is discrete and iden-
tifiable with respect to compiling, combining with
other modules, and loading.

Here we use the module definition for a piece of binary code
resulting from a compiled set ofC++ functions. We will
explain how this fulfils our module definition. It is possible
to compile the functions independently, which results in a
compiler object file. The modules can be loaded and combined
independently. How this is achieved will be explained in the
following sections.

The module must be in a special structure. It can be placed
at an arbitrary position in the memory. Therefore, it must be
relocatable. This means the addresses in the compiled code
must not be fixed. The module must contain information for
setting this addresses when the final position of the module
is known. Fortunately, we already have such a format: the
compiler object files mentioned above. The addresses are
not fixed after compilation. The linker modifies them when
creating the final binary. So the object files already fulfill all
our needs.

B. Design Goals

The most important aspect in the design is the asymmetric
relation between PC and microcontroller. Compared to the
C167 the PC system has enough CPU power and memory
for handling most tasks. Therefore, the PC should be used to
do the most expensive operations.

As a further requirement, modules should be loaded and
removed at runtime. While the robot is still executing some
system critical tasks, the system task must not be stopped.
Furthermore, the loading process must not block the system
for times longer than a few microseconds. Otherwise some
controller functions could fail its timing assertions.

A high level of system independence is an additional
requirement. This enables us to change the operating system
(e.g. to PXROS) on the microcontroller or to work on the pure
hardware without modifying the module loader.

C. Design Results

The design goals result in the following properties of the
module loader:

1) External Memory Management:As explained, the mi-
crocontroller has no system software running on it. Therefore,
there is no memory management. But modules are loaded
dynamically, which requires dynamic management of memory
used by them. As we do not want to burden the microcontroller
with this, we use anexternal memory managementon the
PC system. So the memories of all client microcontrollers are

managed by the PC. It maintains a list of all free memory and
knows about the memory used by the modules.

When loading a module, memory management is asked for
a suitable piece of memory. After loading, the memory area
is marked as used by the module. This all happens without
intervention of the microcontroller. For unloading the memory
belonging to the module is marked as unused.

2) External Dynamic Linking:As described above a mod-
ule is a compiler object file. Normally this is linked with others
to form the application. As we want to add it at runtime the
linking is done while the program is already running. This
is well known from the concept of dynamic linked libraries.
But in contrast to our concept the code is loaded by the
application itself. The code is already on the same system
as the application. Here the module is inserted and removed
from the outside – from the PC.

Common to both methods is that the addresses in the
code have to always be corrected to reflect the final memory
location of the module. Therelocation processis responsible
for this. With dynamic linked libraries the code is relocated
by the application. Here the modules are not processed by the
microcontroller as this would cost too much time and could
block the system. So this is done externally on the PC. After
allocating memory for the module the offset for all addresses
is adjusted. After that the relocated code can be transferred to
the microcontroller.

With the method described so far, code can only be loaded.
But it cannot interact with other modules. For this, it should be
able to call functions of other modules. This is possible dueto
the structure of the object files. If a function in an object file
accesses a function or variable outside, the compiler generates
an external reference. The address of the call and the name
of the function is stored in the file. As the address is known
from earlier loading, the code can be updated. This is exactly
what the module loader does. It holds a symbol table for every
microcontrollers, which contains all names and addresses used
in the loaded modules. If an external reference is found, it
is looked up and the code is updated. With this method a
new module can use all variables and functions provided by
modules loaded before.

3) CAN-Hook: The module loader needs some piece of
software running on the microcontroller that does the actual
module loading. As we use no operating system, we cannot
rely on our current CAN driver interface. To make it work with
arbitrary drivers, we had to make the interface as portable as
possible. This requirement results in an very simple interface.
It consists of a single function only:loader_do(char
*data). If a CAN packet is received, this function is called
with a pointer to the data. The packet is processed and an
answer is generated. This answer is stored in the buffer given
as argument. The CAN driver only has to deliver this packet
and wait for the next one arriving. This way it is really easy
to use any kind of CAN driver.



D. PC Part

1) User Interface:On Linux and RT-Linux exists the Linux
module loader. It performs nearly the same actions as our
loader. For convenience we made our loader behave nearly
the same as the already used one. The Linux loader uses the
commandsinsmod and rmmod. The version for handling
modules for the C167 systems are calledinsmod166 and
rmmod166.

A call of the function looks like this:
insmod166 -t 7 mymodule.o param1=0x1243
In this example the modulemymodule.o is uploaded to the
microcontroller with the number seven. An optional module
parameter with the nameparam1 is set to the value0x1234.

2) Parameters:When writing code like control algorithms,
most time is spent with tuning parameters. These are often
implemented as constants in the module code. Normally it
has to be recompiled when changing the value. We provide
a smarter way of doing this. A module can have parameters,
which can be set when uploading. In the program code they
appear as normal variables. In fact they are. For defining a
parameter only a global variable with the same name has to
be defined. Executinginsmod with an optionname=value
will set the variable to the given value. This allows for a very
efficient development.

3) Special Functions:Most modules require some initial-
ization after the upload. This is done by a special function
init_module() which returns an integer. If found inside
the module, it is called after the upload. A return value of
zero reflects that the initialization succeeded. Otherwisethe
loading of the module is canceled.

A similar function exists for unloading a module. Before
removing the code, it must be assured that it is not in use
anymore. This is done by the functionremove_module().
It should try to stop the module. A return value of zero reflects
that this succeeded. Otherwise the module cannot be removed.

4) The Complete Loading and Unloading Process:The
loading of a module consists of the following steps:

• The size of the module is detected. A memory area big
enough to hold the module is reserved. This results in a
memory offset, specifying the start of the memory area.

• The addresses in the module are relocated according to
the determined offset.

• The binary image is transferred to the microcontroller.
• If any parameters are given, the corresponding values are

adjusted.
• If a function init_module exists, it is called on the

microcontroller. The return value is transmitted to the PC.
• If the return value reflects an error, the allocated memory

is freed.
• The symbols of the module are merged with the symbol

table of the microcontroller.

The unloading is done as follows:

• If the module contains a functioncleanup_module,
it is called.

• If the return value reflects an error, the unloading process
is stopped.

• The symbols defined by the module are removed from
the symbol table.

• The memory of the module is marked as unused.

E. Microcontroller Part

The microcontroller runs a part of the module loader system
that is responsible for receiving data and performing the tasks
necessary for loading and activating the module. This part was
kept as small and efficient as possible. We tried to isolate
the smallest set of functionality needed. This results in the
following three operations.

1) Store data in memory.
2) Run a function at a given position.
3) Read data from memory.

In fact the last operation is not necessary for the normal
operation of the module loader. But it adds some very useful
functionality consuming only a few bytes of code. The whole
module loader part on the microcontroller consists of only 586
bytes of machine code.

IV. POSSIBLEAPPLICATIONS

The most important reason for developing the module
loader is to shorten development cycles. But there are other
applications that benefit from it.

A. Adapting Controlling Software at Runtime

Different fields of application need different properties of
the controlling software. For example consider a walking robot
which has to go to a wall and drill a hole there [6]. This
includes two different tasks – the dynamic walking and the
static holding of the tool. Both tasks require different kinds
of controller software to achieve optimal functionality. One
possibility would be to store two controller programs on the
microcontroller and switch between them. But for more tasks
this becomes cumbersome. It leads too many distinctions of
cases. The structure becomes more and more unmanageable.

The module loader provides a smarter way of doing this.
It allows to replace the whole controller software at runtime.
This results in the option to have a single controller for every
task. The different controller types remain independent. They
can be switched by unloading and loading of the corresponding
modules. In our example, there would be one controller system
for walking and one for drilling. First the robot will load the
modules for walking and use them for reaching the wall. After
that, these modules are unloaded and the modules for the
drilling controller would be loaded. They provide the static
behavior, which the walking controller cannot.

The advantage for the developer is that he can design
the controller for every task independently, minimizing the
complexity. This method can also be applied to other parts of
the system.



B. Overlay Technique

An important aspect when writing software for the micro-
controllers is the very limited amount of memory available.
This does not only limit the size of data structures used but
also the code size. One possible way to overcome this is
the overlay technique. This was a common way of writing
software for 8-bit processors. Commonly only small amounts
of the code are actively used. There exist many functions that
are only responsible for the initialization of the hardwareor
data structures. Normally they run only once at startup. So the
code can be removed after execution to reuse the memory e.g.
for data structures.

We used this approach for some initialization routines. They
are running at startup for calibrating the legs of the walking
robot (see section V –joint calibration module). The code
is rather complex and in all it requires 12 kByte of RAM.
As we only have 48 kByte of free RAM, this is significant.
The code is a separate module that is loaded, executed and
removed. This method could be applied too many parts of the
controlling software.

C. System Monitoring

In section III-E we mentioned an extra operation for reading
data from the microcontroller remotely. This operation was
added because it allows for additional functionality. Together
with the symbol table, we can read values of variables with-
out influencing the normal program execution. This way the
system can be observed and easily debugged.

D. Simple Remote Procedure Calls

The interface of the microcontroller gives us a method of
calling functions at a custom location. This is used for calling
init_module andcleanup_module. But it can also be
used for other functions. The only restriction is that they
cannot have parameters and must return an integer. These
restrictions can be abolished by various means. Complex
return values may be stored in global variables that can be
read by the system monitoring (section IV-C). The value of
variables can be changed in a similar way. This allows us to
store parameters in variables.

This interface provides a functionality similar to other
remote procedure calls. But it is not as transparent as others. In
return, no additional code is required on the microcontroller.

V. EVALUATION

As we have seen in the previous chapter the module loader
can be used for several scenarios. Now we explain various
modules that we have developed when applying the module
loader concept. These are our testbed to evaluate the feasibility
and applicability of our concept to real-world examples.

As mentioned before we have two similar mobile robot
platforms. Therefore, it is useful to design modules that can
be used on both ones. So it is necessary to figure out what
they have in common. First, both robot systems have a CAN
bus. For using it we need a module – thecan driver module
– providing the CAN interface. Furthermore, the realization

of the output is implemented similar, too. Theoutput stream
moduleprovides the functionality to send messages from the
C167 to the PC. Our main use is for debugging purposes. As
we need fractional numbers for some tasks but the C167 has
no floating point unit, we had to achieve it in an other way.
First we tried to use some floating point modules. But they
use 25 kByte RAM in total. We had too few memory left to
get other tasks running. Furthermore, it was too expensive
due to the emulating algorithms. So we introduced thefix
point module, which encapsulates corresponding arithmetic
functions. Overall, it is more efficient than the floating point
emulation and uses only 6 kByte of RAM.

At this point the implementation is very hardware specific.
As you can see in figure 2 there are modules for both robot
platforms.

We will describe the software modules for the mobile robot
platform LAURON in detail. First there exists a module – the
Lauron board module– which provides control of the basic
hardware the C167 is connected to. This includes the controlof
the A/D converter and the shaft encoders but also the controlof
the joint and camera head motors. Furthermore, we developed
modules for controlling the LAURON. First of all, there is the
joint calibration module. It is responsible for calibrating the
leg joints. After calibration, thejoint calibration modulecan be
removed as described in section IV-B. The calibration results
are stored in theLauron board module. Now it is possible
to control the legs with the help of theleg control module.
This module uses thejoint control moduleand thekinematics
module to move the joints of one leg according to its foot
position. The gait controller on the PC sends to the C167
units how they should move the legs. Theleg control interface
moduleensures that the instructions are available for theleg
control module.

The kinematics modulehas to do computations with high
precision. Therefore, it uses thefix point module. Furthermore,
there exists acamera head control module, which is used to
control the bias and the viewing direction of the camera head,
as well as aforce sensor moduleand anultrasonic sensor
module, which get data from the corresponding sensors.

All these modules, from the LAURON as well as from the
KURT2 , are independently exchangeable. We first imple-
mented a simple joint controller for the LAURON because we
wanted to get the robot walking as soon as possible. By now
we use a more complex joint controller to move the legs more
precisely. Therefore, just thejoint control modulehad to be
changed. Also the development of an enhanced gait controller
on the PC introduced no problem. We only had to replace the
leg control moduleand theleg control interface moduleby
new ones.

Our experience with the module loader so far showed that
using it encourages a structured design, because the developer
is forced to implement one set of functionality as onemodule.

VI. RELATED WORK

Modular design is well known in software development.
There are many concepts and programming languages realiz-



Fig. 2. overview of the developed modules for LAURON and KURT2

ing it. Anyway, this mostly results in modules at source code
level. Their goal is a better software design. On the other hand,
we concentrate on flexible handling of already written code.
Especially in the context of robot programming such systems
seems to be rarely used.

A. Modular Controller Architecture

The Modular Controller ArchitectureMCA is a modular,
network transparent and realtime capable C/C++ framework
for controlling robots and other kind of hardware[7], [8]. It
has been used to develop the controller software for several
mobile robots like the LAURON. The system consists of
modules that are connected via a unified interface. This allows
a very restricted but clean way of implementing components.
Unfortunately, modules exists only at source code level – rep-
resented byC++ classes. Compilation results in a monolithic
binary that is loaded as a whole. We considered to use it for
our development, but the system was too static and inflexible
for our needs.

B. Linux Module Loader

The most similar system is the module loader of the Linux
operating system [9]. It is normally used for loading device
drivers. We tried to mimic the user interface and functionality.
The main difference is that the Linux operating system loads
the modules itself, while we do it from an external system.

C. Overlay Technique

The overlay technique was a common way of making large
programs fit into small memory. Especially in the era of
8-bit computers, this was commonly used. Normally it is
not needed anymore for typical personal computers. Overlays
allow different parts of the program to share the same memory
space. Only the overlay that is currently in use must be
loaded. The others remain on disk and are loaded as needed.
Programming overlays can be a difficult task. Only a few
compilers (like [10]) support them directly. So assembler
programming might be necessary. The loading must also be
triggered manually inside of the code.

The overlay concept as described for the module loader also
aims to save memory used by program code. But the overlay
process is different as it is done externally by the module
loader.

D. Remote Debugging

The functionality of the module loader is similar to the
remote interface of debuggers like the GDB [11]. It can be
used to load binary code to a client system, and it also
has functions for setting and reading variable values. The
difference is that the code can only be loaded at once. The
interface is not as efficient as it depends on a plain text
protocol via serial interface [12]. We first considered to use
this interface for our programming. But it was too slow and not
flexible enough. It also has additional unused functionality like
setting breakpoints. This costs additional memory we cannot
spare.

E. JTAG Interface

A possible alternative to the module loader is the JTAG
Interface [13]. The JTAG Interface standard was defined in
1990 by the Joint Test Action Group. It allows testing and
controlling of a microprocessor via a five-pin serial interface.
Motorola invented a similar method – the Background De-
bugging Mode (BDM) [14]. But it is available for their own
microprocessors only. With these methods it is possible to
upload binary code to the processor, but it is more complex as
you have to write directly to the processor registers. This leads
to the problem that the implementation of such asoftware
loader is hardware specific. Another disadvantage is the speed
of the interface. It is limited to the speed of the serial bus.This
is too slow for our needs.

VII. C ONCLUSION

In this paper, we describe the concept and use of our module
loader. It allows us to handle the controller software of our
robots in a efficient and flexible way. The software of the
microcontrollers consist of several discrete modules. These
can be loaded at runtime. We describe how the module loader
achieves this. Furthermore, we give examples on how the



resulting functionality can be practically used. The modules
used on our robots are also described. This concept can be
applied to other systems, too. They could also benefit from
this.

REFERENCES

[1] B. Gaßmann, K.-U. Scholl, and K. Berns, “Locomotion of Lauron III
in Rough Terrain,” inInt. Conference on Advanced Mechatronics, July
2001, como, Italy.

[2] R. Worst and F. Kirchner, “KURT2 - Eine mobile Plattform für die
Robotikforschung,” inRobotik 2002: Leistungsstand, Anwendungen,
Visionen, Trends. VDI-Verlag, June 2002, pp. 389–394, iSBN 3-18-
091679-6.

[3] C167CR User’s Manual, 16-Bit Single-Chip Microcontroller, Infineon
Technologies AG, 2000, munic, Germany.

[4] CAN Specification Version 2.0, Robert Bosch GmbH, 1991, stuttgart,
Germany.

[5] PXROS, “Project Homepage,” June 2004, http://www.hightec-
rt.com/pxros.html.

[6] T. Ihme, “Posture control and distributed force sensing for technical
applications of walking robots,” inProceedings of the 11th Conference

on Advanced Robotics, ICAR 2003, vol. 2, Jun 30 – Jul 3 2003, pp.
1032–1037, ISBN: 972-96889-8-2.

[7] Modular Controller Architectur Version 2, “Project Homepage,”
http://mca2.sourceforge.net/.

[8] K.-U. Scholl, J. Albinez, and B. Gassmann, “MCA - an expandable
modular controller architecture,” in3rd Real-Time Linux Workshop,
2001, milano, Italy.

[9] M. Beck et al., Linux-Kernel-Programmierung, 2nd ed. Addison-
Wesley, 1994.

[10] Homepage - Borland developer network,Antique Software: Turbo Pascal
v3.02, jun 2004, http://bdn.borland.com/museum/.

[11] Homepage – GDB: The GNU Project Debugger,
http://www.gnu.org/software/gdb/gdb.html.

[12] B. Gatliff, “Implementing a Remote Debugging Agent for GDB,”
http://billgatliff.com/articles/gnu/gdb-agent.pdf, Tech. Rep., May 2004.

[13] Joint Test Action Group (JTAG),IEEE Standard Test Access Port
and Boundary-Scan Architecture, Institute of Electrical and Electronic
Engineers (IEEE), New York, Mar 21 1990, IEEE Std. 1149.1-1990.

[14] S. Howard,A Background Debugging Mode Driver Package for Modular
Microcontrollers, Motorola, Motorola Literature Distribution, doc. no.:
AN1230/D.


