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Summary. This paper describes the motion planning for a walking robot based
on environment information. The planning algorithm is based on random sampling.
The environment information are generated by a stereo vision algorithm that has
been modified to meet real-time requirements.

1 Introduction

Legged vehicles can help to get access to many parts of earth surface which
wheeled vehicles can not cope. Different concepts are used to control legged
locomotion in unstructured environment. Simple control concepts use gait
pattern, which define a fixed sequence of footholds and are suitable for quite
flat terrain. Reactive control components like the elevator reflex [8] are added
to improve walking capabilities and terrain adaptation. But problems arise if
the exception handling dominates the normal walking process. Path planning
can help to minimize exception handling occurring. It uses some environment
information to calculate movements avoiding exceptions. At the same it should
result in good movements. This leads to the use of an optimization approach
as described in section 4.

For getting the needed environment information we use stereo vision. The
usual algorithms do not meet our real-time constraints or require special hard-
ware. So we developed an anytime algorithm [3] that returns imprecise but
sufficient results if aborted. It is described in chapter 3.

2 Related Work

There exist many control systems for walking robots. Gait pattern as used
in [7, 17] are stable but not reliable on uneven ground. Even reactive control
components like used in [8] have the mentioned drawbacks. Motion planning



2 Richard Bade, André Herms, and Thomas Ihme

in [12] is only used to control gait parameters like stroke height. Planning as
described in [20] switches between proper gait pattern, but these are limited.
In [5] the whole motion of the robot is planned. Genetic algorithms and back-
tracking is used for this. But there are no real-time assertions. The ordinal
optimization approach used in [2] cannot guaranty that a solution is found.

The real-time stereo vision solutions used in [13, 14, 16] require special
hardware or set constraints to the target environment [4]. As we focus on a
more general approach, we developed an algorithmic solution.

3 Stereo Vision as Anytime Algorithm

Stereo vision algorithms are generally time consuming. To use them within a
real-time system, an implementation with a predictable runtime is required
and so an anytime algorithm is preferred. This class of algorithms requires
that a result is available no matter when the algorithm is stopped.

To get an anytime algorithm we first have to choose a stereo vision method,
which we can implement as such an algorithm. Our choice for this was the
block-matching method. It is a representative for area based stereo [4]. We
decided to use area based stereo, because it can be used either for all pixels of
an image or for selected areas [21]. This provides the opportunity to extract
features in the image and compute the displacement vectors for these features
only. In the future, one can use this opportunity to decrease computation
time, if only parts of the image are of interest.

The main idea of the block matching algorithm is a similarity measure
between two equal sized blocks (n × m-matrices) in the stereo images. This
means, a block in the left image will be compared with all possible blocks of
the right image, which have the same size. A standard method to describe
the similarity is the mean square error (MSE ) of the pixel values inside the
respective blocks. For further details on Stereo Vision using the standard block
matching method see [6].

But the standard block-matching method can only provide results after
the algorithm is finished. To transform it into an anytime algorithm means,
changing it to get a first result as soon as possible, which can be gradually
improved afterwards. We have solved this problem by using a pyramid model
approach.

3.1 Hierarchical Stereo Vision

Tanimoto and Pavlidis [18] introduced the use of pyramid models for im-
age processing. We use a four–level pyramid to enhance the block matching
method.

The correspondence problem will be solved on each level of the image
pyramid starting with the coarsest level. The results of the previous level
are used to initialize the disparity computation of the more detailed level.
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Therefore, the search for corresponding blocks starts at the disparities, which
were found in the coarse levels. This allows to decrease the search space in
horizontal direction. A minimal MSE can be found fast. For further details
on the algorithm see [11].

The main idea is to be able to use the results of every level as computation
result, if the algorithm is stopped in between because of timing constraints.
Missing results of one level are completed with results of the previous level.
This ensures that the result improves steadily. Therefore, a first result, though
imprecise, is available in short time. Because imprecise results are better than
no results they can still be used, e.g. to avoid collisions.

Now we show how to speed up our method to faster get the highly detailed
results. A serious problem of the block-matching method is the size of the
search space. If the epipolar constraint (see [6]) can not be fulfilled the search
space must be spread to several rows. Another assumption is made about the
order of the pixels in both images. It is assumed that pixels of one epipolar line
in one of the stereo images can be found in the same order in the corresponding
epipolar line in the other image. But this assumption is violated, if the depth
distance between objects in the observed scene is too large. We considered
that, as we do not want to restrict the environment. So the block-matching
method was changed to allow for a search of corresponding blocks in horizontal
and vertical direction. But to limit the search space we use an initialized
disparity value (from previous pyramid level) so that definite false results will
not be considered. Additionally, the search space in horizontal direction can
be limited due to the vision parameters of the cameras. The closer an object to
the cameras is, the larger the disparity values of the corresponding pixels will
be. If one assumes a minimum distance, e.g. by the stereo camera configuration
on the robot, the maximum horizontal search space can be defined exactly.

However, not only the search space defines speed and quality of the results.
An important parameter is the block size. We have tested different block sizes
and concluded that the ratio between block height and block width should be
2:3, if the epipolar constraint is used further on. In our tests, a block size of
12×8 pixels yields the best results. The hierarchical structure of the algorithm
and the available provisional results lead to an anytime algorithm. With this,
we have a method that provides depth information from stereo images in
real-time.

4 Walking as Optimization Problem

The goal of motion planning is to calculate a good movement based on envi-
ronment information and application demands. By the claim for a good solu-
tion the problems may be treated as an optimization problem: Find a valid
solution (movement) from the solution space (all possible movements) that
is optimal regarding given objectives. To solve the optimization problem, we
need a formal definition and an algorithm for solving it.
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4.1 Definition

A formal optimization problem is a triple (U, S, φ). The input U parameterizes
the set of valid solutions S(U). The weighting function φ defines some value
by mapping every elements to a real number:

φ : S(U) 7→ R (1)

This triple has to be defined for our given problem. The input consists
of the source and destination position and the environment information gen-
erated from the sensor data. The positions are defined by two-dimensional
world coordinates. The environment information is given by a height map
which defines the height of a point every 100 mm.

The solution space represents all valid movements. It should include ev-

ery possible solution. Otherwise a good one could already be excluded by the
definition. The whole movement is composed by the motion of the individual
legs and the robot body. Each of them is described by a reference point. For
the legs this is the foot, for the body the center of gravity. Their movement
is described by a list of events. An event defines a linear movement between
two points in a given time. By concatenation it can be used for linear ap-
proximation with arbitrary precision. So we have seven lists of such events for
describing the movement of the robot.

The weighting function assigns a value to reflect the quality of a movement.
We considered several criteria for this. They are combined to define the final
value. The most important criterion is the speed. We use the direct distance
to the destination divided by the time. The faster, the better the movement
is. An additional point we considered is the stability of the robot. This is
affected by the ground and the arrangement of the legs. For the latter case
the stability margin (as described in [15]) gives a good measurement. We
calculate the minimal value for the whole movement. The bigger, the lower is
the risk to tip over. For the stability of the ground we considered steer areas.
The robot can loose it’s grip on this. We use the maximal gradient of the
ground under all steps. The lower it is, the better the movement. All these
conditions can be incorporated into a weighting function ψi : S(U) 7→ R.
These terms are linearly combined to the final value: φ(s) =

∑
i
λiψi(s). The

λi allow to adjust the influence of the criteria.

4.2 Possible Heuristics

Due to the complexity of the problem no exact solving algorithm is known. So
we concentrate on finding a good heuristic. Some of the commonly used meth-
ods to solve optimization problems were investigated regarding their practi-
cability for our problem. At first this is only done theoretically by checking
common criteria. The results are listed in table 1. Their description can be
found in [10, 1, 19].
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heuristic anytime parallel required general
algorithm computation memory applicability

greedy no no low bad
branch and bound yes yes low bad
local search yes multi start low good
tabu search yes multi start high good
random sampling yes yes low very good
simulated annealing yes multi start low good
genetic algorithms yes yes high good

Table 1. selection of possible heuristics

We want some anytime algorithm [3] that allows us to stop the calculation
at any time giving a valid (maybe suboptimal) result. Furthermore, to enable
the possible use of all processors in the robot, parallel computation should be
possible and the memory requirements should not be too high. The most im-
portant requirement is the general applicability to the problem. This ensures
that we can use it for our problem.

As a result, three possible heuristics are chosen: local search, random sam-

pling and simulated annealing.

4.3 Implementation

For the three heuristics we need some way of generating random valid move-
ments. This appears to be a nontrivial task. No efficient algorithm is known
for only determining, if a valid movement exists [5]. So we lower our require-
ment to an algorithm which generates random movements that are valid in
most cases. The result is a multistage process as described in [9]. For proper
handling of invalid solutions we use a penalty value. They are treated as valid
but really bad. So they should never occur as optimum.

For local search and simulated annealing a neighborhood definition is
needed. Here a neighbor is defined by a small difference in one of the movement
parameters, e.g. a foot position.

The three heuristics are applied to our optimization problem. The re-
sulting algorithms follow the usual description. For testing we use a virtual
environment. The world model is created manually at the moment. It is repre-
sented by a raster image where the green channel of a pixel corresponds to the
height. This allows us to create various scenarios. The movement of the robot
is planned regarding the given terrain. To verify the results we developed a
visualization (see figure 1).
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Fig. 1. robot visiualization
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Fig. 2. results: flat ground

Fig. 3. original image on the left and the results after every pyramid step

5 Experimental Results

5.1 Results from Stereo Vision

We found out that our anytime stereo vision algorithm provides results much
faster than the unmodified stereo vision algorithm we used as basis, if more
imprecise results are acceptable. In figure 3 one can see that the results after
every pyramid step becomes better. This is, the more time is available for the
computation, the more detailed results are produced. For motion planning, an
earlier result could be used as big structures and objects are already visible.
This is sufficient for avoiding large obstacles.

5.2 Results from Motion Planning

Our tests with the different motion planning algorithms showed that only the
random sampling approach is suitable for practical use. Instead of the other
ones its computation time meets our requirements.

As random sampling is a probabilistic algorithm we had to run it several
times for evaluation. Figure 2 shows the valid results for walking on even
terrain. We got 2 259 valid movements for 10 000 iterations. So the probabil-
ity for a valid solution per iteration is p = 2259

10000
= 0.2259. The chance of

finding at least one valid solution depends on the number of iterations n. it
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Fig. 4. scenarios: step, trench, unsurmountable obstacle, irregular terrain

can be computed by P (n times) = 1 − (1 − p)n. For n = 100 it is already
0.999 999 999 992 419. So you can assume that after a certain number of it-
erations the chance of finding a valid one is nearly one. Figure 2 shows the
distribution of the solutions. To get a solution of the best 1% more iterations
are required. In this example there is a probability of 0.89 for 1 000 iterations.
This is typical for a calculation time of 30 seconds.

The same way other scenarios are tested: trench, step, unsurmountable

obstacle, and irregular terrain. All of them are solved sufficiently. The bench-
marks trench and step are constructed in a way that normal regular gait
pattern could not handle them. The robot has to choose the right distance to
the obstacle and a special order of moving the feet. Our motion planner is able
to handle this. The scenario unsurmountable obstacles demonstrates that the
motion planner is even able to correct wrong guidelines from the application.
The robot should walk to point straight ahead. But in direct line there is an
obstacle it can not overcome. The planner handles this situation by walking
around. The scenario of irregular terrain represents a typical case. It contains
many steer areas the robot should not step on. The planner is also able to
handle this.

6 Conclusion

Concluding, we want to point out that we dealt with the problem of mo-
tion planning based on information provided by optical sensors. This problem
includes two main subproblems. First, obstacles had to be detected under
real-time conditions. Second, this data were used for motion planning. Obsta-
cle detection was solved with an anytime version of a stereo vision algorithm.
This allows to comply with the real-time constraints. The motion planning
has been treated as an optimization problem, which allows solving it with a
good heuristic.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation: Combinatorial Optimization Prob-

lems and Their Approximability Properties. Springer Verlag, 2000.
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