
2
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Transactions (2)

Solution: modeling computations executed by cooperating processes as transactions having ACID properties

C: Consistency by only allowing serializable execution of concurrent computations (atomicity of effect)

I: Isolation, i.e. realizing atomicity of effect also in the presence of a computation failure

D: Durability (permanence of effect), i.e.completed transactions can survive node/media crashes (commit)

A: Atomicity of failure (all or nothing - property), i.e. computations can be completely undone (abort)

ad C:

The two-phase lock protocol (2PL):
The serialization order produced by 2PL
can be determined by the order in which
the scheduled computations reach their
lock point.
ad I:
Applying Strict 2PL:
Locks cannot be released until the
transaction is completed.

3
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Transactions (3)

ad D:
permanence of effect

meaning that if a transaction completes successfully, the results of its operation in spite of subsequent
node crashes will never be lost and cannot be aborted at any time later.

commit
meaning that the transaction has completed successfully and that its effects are made permanent.

The two-phase commit protocol (2PC):

4
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Transactions (4)

Blocking of 2PC:

Three-phase Commit (3PC):

5
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Transactions (5)

ad A:
atomicity of failure

which ensures that if a transaction is interrupted by a failure, any effects (state changes on objects)
produced by the failed transaction will be undone so that it appears as if it never has been executed.

abort
denotes the undoing of all effects of a transaction by restoring the respective recovery line by means of
local backward error mechanisms.

cascading abort
which denotes the abort of all affected transactions as a consequence of a preceding abort. Obviously,
the occurrence of a cascading abort would violate the isolation property or the durability property

Local backward error mechanisms

Undo rule
ensures that in case of a transaction abort those recovery points of the affected objects that have been

established at the beginning of the transaction can be restored.

Redo rule
ensures that the objects written by a transaction can be updated according to its results.

6
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Transactions (6)

Intentions lists (No Undo/Redo)

�• Active transactions are not allowed to update current object states.

• All the changes that a transaction wants to make to object states are stored in a list.

• This list is written out to non-volatile storage.

• If the transaction commits, the affected objects are modified according to the „intentions list“.

• In case of an abort, the list is simply deleted.

Shadowing (No Undo/ No Redo)
Idea:
to organize the data structures on stable storage such that a single atomic write to it effects that a
transaction is committed and for all modified objects of the transaction the new state is stably stored.

• The location (address) of the recovery points of the affected objects, (the state obtained by its last
commit), stored in the active directory, is copied in a directory called scratch copy.

• There exists a master record which has a bit indicating which of the two directories is the current one.
• Each write operation on an object results in changing the corresponding entry in the scratch copy to

point to the address of the new object version.
• The commitment of the transaction is triggered by a so-called atomic pointer swap meaning that the bit

in the master record is simply complemented.

7
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Transactions (7)

Write-ahead logging (Undo/Redo)
�• Active transactions are allowed to update current object states.
• Updates are stored on a log (similar to intentions lists), but now only to redo committed transactions in

case of a node crash (Recall: committed object states are guaranteed, i.e. cannot be aborted later)
• To permit a necessary Undo operation in case of a transaction failure, so-called Before-images (object

state before the update) also are stored on a log. The same applies to commit records.
• If the system restarts after a node crash, the log is consulted. Updates made by committed transactions

(identified due to the corresponding commit record on the log) are redone, all others are undone.

Architecture of a distributed transactional data base system

8
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Conclusion

With (classical) transactions, the problem of the domino effect was solved by enforcing isolation between

different transactions, e.g. by means of strict 2PL.

---> in general works no longer, if transactions must cooperate

---> looking for a model for distributed systems in general, i.e. including cooperating processes:

the isolation property must be given up (serializability as consistency criterion may still work))

---> there still exists a priori defined recovery line per action, but cascading aborts become possible

---> it needs damage assesssment before doing recovery (looking for the respective recovery line by

checking which actions have to be aborted)

---> classical data base transaction are no adequate model to support generic applications on the OS level

The more general problem to be solved is:

How to execute the joint activity of cooperating computations (actions)?

To solve this problem means to find a solution for the recovery of such joint, distributies activities!

Transactions (7a)

9
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Atomic actions (4)

The damage assessment graph (DAG) for atomic actions
A Recovery Unit (RU) represents the set
of all object states that are produced by
a certain atomic action on one node.

The postulate of serializability considerably
simplifies the structure of a DAG. The local
DAGs adopt a tree structure.
The possibility for backward expansion does
not need to be checked because it cannot occur
anyhow.

The actions 4,1 and 4,2 are nested with respect
to action 4 in the example above. Hence, they
can abort without automatically affecting their
father. The other way round does not hold
because of the atomicity property, i.e. whenever

RU 4 aborts all of its sons are included.

node 1 node 2 node 3

3.1

4.1

i.j

object dependency

transaction dependency

2.11.1

recovery unit of action i located on node j

2.2 2.3

3.2

5.1

4,1.1 4,2.1

6.2 6.3

4,2.3

:

:

:

10
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Atomic actions (5)

The damage assessment (chase) protocol, executed to identify the abort set, illustrated by an example:

Assume the RM (recovery manager) of node 1
gets notice to abort RU 3.1. Consequently,
the whole subgraph emanating from the root
vertex 3.1 must be contained in the abort set.
The abort message to be generated includes the
identifiers 3 and 4,2. This results in the abort
of the RUs 3.2 and 6.2 at node 2, which then
generates a further abort message for action 6.
In receiving both messages, node 3 aborts the
RUs 6.3 and 4,2.3 and sends no further chase

message which concludes the protocol.

node 1 node 2 node 3

3.1

4.1

i.j

object dependency

transaction dependency

2.11.1

recovery unit of action i located on node j

2.2 2.3

3.2

5.1

4,1.1 4,2.1

6.2 6.3

4,2.3

:

:

:

11
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Atomic actions (6)

The commit protocol
The main task in moving forward the commit line is the execution of a Commit Protocol (CP). First, the
commit set has to be determined.

Example: node 3 wants to commit
action 6 and acts as coordinator

node 1 node 2 node 3

6.3
6.2
3.2
2.2

3.1
2.1 2.3

coordinator
sub-coordinator

sub-coordinator
slave

node 1 node 2 node 3

3.1

4.1

2.11.1 2.2 2.3

3.2

5.1

4,1.1 4,2.1

6.2 6.3

4,2.3

Resulting commit line:
actions above that line belong
to the commit set

