
1
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Models of Distributed Computing (7)

4. RPC - Client/Server Model
This is the model still mostly used in distributed programming and distributed computing (WWW).
Idea: structuring the application around servers which provide services, and clients which request them;

remote requests should look like to the client like a local service request

RPC Architecture
A software architecture is required that provides tools and mechanisms to support distributed programming
within this model.

RPC middleware

2
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Models of Distributed Computing (14)

5. Distributed Shared Memory (DSM) Model

Idea: Emulating the environment of a shared memory multiprocessor in a distributed system
---> Providing the illusion of a centralized memory system (e.g. including library functions)
---> memory distribution is made transparent to the application programmer

Main application areas: where clusters of workstations are used to accomplish high-performance computing

Main problem: Maintaining consistency by, if possible,
• minimizing the number of messages (now “remote object access” type instead of RPC)
• minimizing the latency

Various DSM Architectures implementing Atomic Consistency
�

3
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Models of Distributed Computing (15)

Still, two clients cannot access the same page concurrently. More options:

4
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Models of Distributed Computing (17)

6. Message Buses Model
Idea: allowing processes (characterized as publishers and subscribers) to communicate through an

intermediate component, called the bus
Much lower level communication abstraction than RPC and DSM
---> not adequate for complex distributed applications
Pro´s:
• simple and easy to understand
• allows non-synchronized interaction between message producer (publisher)and consumer (subscriber)
• easier to reconfigure and to scale (e.g. changing number, identity, location of subscribers transparent to

the publishers and vice versa)

Simplest Implementation Architecture:

5
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Inhalt
Teil 2: Verlässliche Verteilte Systeme

1. Einführung zum Begriff Verlässlichkeit (Grundbegriffe)

2. Zuverlässige (Fehlertolerante) Systeme

• Paradigmen
(Fehlererkennung, Kommunikation, Replikation, Fehlerbehebung)

• Modelle insbesondere für VS
(Transaktionen, Atomare Aktionen)

6
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Dependability (1)

Computer System Dependability:
The quality of its delivered service is such that reliance (confidence) can justifiably be placed on this service

Service:
The behavior of the system as it is perceived at the interface to its users

Quality:
The fact that the delivered service complies with the specified service

How to achieve dependability:

• understanding the impairments, i.e. the potential causes for incorrect behavior of the system

• defining measures to express the level of dependability desired

• learning about the means that can be applied

• what are the potential techniques to procure dependable behavior

• how to validate whether the desired values are achieved.

7
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Dependability (2)

dependability

impairments means measures

faults errors failures reliability availability

procurement validation

fault avoidance fault tolerance verification error forecasting

Fig. 2.1: Classification of dependability

8
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Dependability (3)

Impairments:

fault: occurrence of an irregular event in (some component of) the system

error: manifestation of the fault in (part of) the system state which becomes erroneous

failure: fact that the system behavior (delivered service) violates (deviates from) its specification

This chain can be applied recursively when the (distributed) system comprises several components:

Faults are subdivided into classes depending on whether the are caused by hardware, software, or interaction.

9
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Dependability (4)

Measures :

Reliability: measure of the continuous correct (failure-free) service (behavior) of the system
expressed by probabilistic functions like
MTTF (mean time to failure), MTBF (mean time between failure), or by giving a failure
rate probability (e.g.10-9 failures per hour)

Maintainability: measure of the time to restoration of correct service (to recover from a failure)

Availability: measure of the probability of the system being operational at any given time.Given MTTR
(mean time to repair), availability can be expressed as MTBF/(MTBF+MTTR)

Safety: the conditional probability that, given a failure, the system remains in a non-catastrophic
state

Security: considered later

10
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Dependability (5)

Means:

Fault prevention: eliminating the conditions that make fault occurrence possible at system design and
implementation, e.g. using high quality component or design techniques (HW and SW)

Fault removal: detecting faults before they have a chance of causing an error (system testing)

Fault avoidance: combination of fault prevention and fault removal, i.e. aiming at a fault-free operational
system

Fault tolerance: making the system capable to provide correct service despite the existence of errors due
to occurring faults. In consequence, complementary mechanisms must be provided that
block the effect of errors before they generate failures. Applying these mechanisms is
called error processing.

Error forecasting and verification should care for the confidence in the provided means. The former can be
seen as complementing fault removal by predicting the amount of remaining faults in the system. The latter
validates the correctness of the system, e.g. by applying formal methods, fault injection techniques, statistical
trend analysis.

11
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Fault Tolerance (1)

All methods for achieving fault tolerance depend on the effective deployment and utilization of redundancy.
Redundancy

denotes the enlargement of a system by additional resources only for realizing fault tolerance, i.e.
they would not be required for the delivering of the specified service if it could be guaranteed that
the system is free from faults.

Space (Structural) Redundancy

refers to the addition of several copies of the same HW or SW component

Value (Information) Redundancy
refers to the addition of extra information about the value of the data being stored or sent

Time Redundancy

refers to doing the same thing more than once, in the same or different, ways, until the desired
effect is reached.

A still open question is when the redundant resources are actually used
Static Redundancy

denotes error (fault-tolerant) processing that is performed when the system is in the normal
operation mode

Dynamic Redundancy
denotes error processing that is performed when the system is in the exceptional operation mode

12
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Fault Tolerance (5)

Error Processing

Error Processing Techniques

13
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Fault Tolerance (6)

Latent error processing (error compensation)

error correction (Fehlerkorrektur)
the erroneous state is provided with enough static information redundancy that allows the automatic correction
upon activation

error masking (Fehlermaskierung)
enough static space redundancy is supplied which allows the masking of the latent error

Effective error processing (error recovery and error passivation)

damage assessment (Schadensbewertung)
assessing the extent to which the system state is already erroneous (e.g. due to error propagation)

error recovery (Fehlerbehebung)
the transformation of the current erroneous state into a well defined and error-free state from
which the normal operation can continue

14
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Fault Tolerance (7)

backward error recovery
restoring a prior, correct (error-free) system state

forward error recovery
producing a new correct system state

error passivation
taking care that the detected error cannot be activated again

fault localization
determining the component that was affected by a fault

reconfiguration
elimination of the corrupted component and either

replacing it by an identical one or
take over of the functionality of the eliminated component by another,
already available component of the system

15
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Fault Tolerance (8)

Transitions between different erroneous states

prior
error-free
state

fault
occurrence

latent error

activation

activation
combined with
latent error processing

effective error

transition to
a new state

internal

external

new latent
error

system failure

effective
error processing

new
error free
state

forward error recovery

backward error recovery

16
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Fault Tolerance (9)

Illustration of the Triple Modular redundancy scheme (exploiting space redundancy)

function

component p component p``component p`

Voter

majority result

The reliability of this scheme is RTMR = RV * (RC
3 + 3 RC

2(1 - RC)where RV and RC denote the
reliability of the voter and the three identical components, respectively.
Assuming that RV = 1 ---> RTMR > Rc for Rc > 0,5.

If only one component is erroneous, ie. producing wrong results ---> RTMR'= RC
2

---> below the reliability each of the two still correctly working components
---> error passivation is highly recommended

17
Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett

Fault Tolerance (10)

Methods of Fault Tolerance

redundancy error detection error processing

latent error processing effective error processing error passivation

error masking error correction fault localization reconfiguration

damage assessment error recovery

forward backward

Fault Tolerance

