
Vorlesung “Verlässliche Verteilte Systeme”, WS 09/10 E. Nett
29

Distributed System Paradigms (15)

FIFO order
Any two messages sent by the sameparticipant, and delivered to any participant, are delivered
in the order sent --> FIFO reflects the potential causal order generated by a single process.

Example Ia:



Vorlesung “Verlässliche Verteilte Systeme”, WS 09/10 E. Nett
30

Distributed System Paradigms (16)

Example Ib:

Causal Order

For any two messages m1 , m2 sent by p, resp. q, to the same destination participant r:
If sendp (m1 ) —> sendq (m2 ) then deliverr (m1 ) —> deliverr (m2 ), i.e. m1 is delivered to r before m2      

Example IIa:



Vorlesung “Verlässliche Verteilte Systeme”, WS 09/10 E. Nett
31

Distributed System Paradigms (17)

Example IIb:

Total Order
Any two messages delivered to any pair of participants are delivered in the same order to both participants
Example III:



Vorlesung “Verlässliche Verteilte Systeme”, WS 09/10 E. Nett
32

Distributed System Paradigms (18)

Ordering Algorithms
causal order algorithm I:
(pastp:=list of all messages sent and received before by a sender process p)
- When a message is sent, it carries the past of its sender in a control field.
- After sending the message, it is added to the sender´s past.
- When a message is received, its past is checked. Messages in past not yet delivered, are delivered to the 

application and added to the past of the recipient. Then, the received message itself is delivered and, 
also, added to the past of the recipient. 

causal order algorithm II:
(pastp:=list of all message identifiers sent and received before by a process p)
- When a message is sent, it carries the past of its sender in a control field.
- After sending the message, its identifier is added to the sender´s past.
- When a message is received, its past is checked. If messages in past are not yet delivered, the message is 

put on hold, until these messages will arrive and will be delivered to the application and, subsequently, 
their identifiers have been added to the past of the recipient. 

- Then, the received message itself is delivered and, also, its identifier is added to the past of the recipient. 



Vorlesung “Verlässliche Verteilte Systeme”, WS 09/10 E. Nett
33

Distributed System Paradigms (19)

causal order algorithm III (Lamport clock):
(past:=each process keeps a single integer called logical clock (lclock))
- When a message is sent, it carries the lclock of its sender in a control field.The lclock is incremented.
- Messages are exchanged using FIFO channels (Two messages from the same sender to the same 

destination are received in the order they were sent.).
- When a message is received, it is placed in a waiting queue, ordered according to its lclock (those with 

identical lclock are ordered according to their sender´s identifier). The message is kept in waiting state 
until a message with equal or greater lclock is received from every sender in the system.(Because of 
FIFO channels, then, all messages with smaller lclock (timestamp) have also been received). The 
message becomes deliverable.

- A deliverable message m at the head of a waiting queue is delivered. When m is delivered, the lclockp

(pastp) of the recipient is updated according to this rule: lclockp= max (lclockp , lclockm )

Example for multicast messages (past is reduced from a matrix clock to a vector clock):



Vorlesung “Verlässliche Verteilte Systeme”, WS 09/10 E. Nett
34

Distributed System Paradigms (20)

Approach 1 (symmetric algorithms) for designing total order algorithms
Assumptions:
- all messages are sent to all participants (always met by multicast)
- a deterministic rule is used to order messages having the same lclock
Apply algorithm III
--->  messages are delivered in the same order at every process
--->  all processes execute the same steps (therefore symmetric algorithms)
Pro´s:
- simple to implement, relying on logical clocks. Even these can be abandoned. if synchronized clocks are 

available to timestamp messages.
- no additional exchange of control messages
Con´s:

- Latency of message delivery is determined by the rate of the slowest process

- Symmetry assumption may be too strong (not all processes are sending processes --> add. control mess.)

Approach II (token site)

Idea: select one process (sequencer, token site) to do the job of ordering

- all messages are sent to the sequencer which assigns a unique sequence number to them

- It retransmits them back to all intended recipients



Vorlesung “Verlässliche Verteilte Systeme”, WS 09/10 E. Nett
35

Distributed System Paradigms (21)

(sequencer sends the messages)

(sequencer only sends the sequence numbers)

• This scheme performs best when messages are sent by the sequencer itself ---> Some systems 
dynamically move the token to the most busiest node, or rotate the token among all nodes.

• In order to preserve the ordering information in case of a sequencer crash, the Chang/Maxemchuk 
protocol variant requires the sequence numbers to be known by a quorum of nodes before delivering the 
messages

Example I:

Example II:


