
 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 15

Distributed System Paradigms (37)

C2 failed to deliver a correct result because it has become dependent on the effects of another computation
C1 although both of them were intended to be totally independent from each other.
To prevent this, is the goal of concurrency control

Incorrect execution of the schedule [o1
1(x1), o2

1(x1), o1
2(x1), o2

2(x2), o3
1(x2), o4

1(x2)]

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 16

Distributed System Paradigms (38)

Serializability
A schedule S is serializable if it is computationally equivalent to at least one serial schedule S', i.e. if S
produces the same output and leaves the object space in the same state as S'.

Ck <Cl (Cl is dependent on Ck), if both computations contain at least one pair of conflicting operations such
that oi

k(x) < oj
l(x) .

Let <* be the transitive closure of < with respect to all computations of a schedule S.
S is orderable w.r.t. its computations if S is acyclic with respect to <*, meaning that S does not contain any
cycle Ci <… < Cj < … Ci.

S is orderable if and only if <* represents a partial order on the computations in S.

S is orderable --> S is serializable

Recalling the previous example, we observe that o1
1(x1) < o1

2(x1) and o2
2(x2) < o3

1(x2). Hence, C1 <
C2 < C1 meaning that the corresponding schedule is not orderable.

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 17

Distributed System Paradigms (39)

• orderability is only a sufficient not a necessary condition for serializability.

Read/Write semantics

For each pair (Ci,Cj) of dependent computations

---> it suffices to care that <*rw U <*wr U <*ww is orderable in order to ensure serializability

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 18

Distributed System Paradigms (40)

Locking
Two locks are in conflict, if both are locks on the same object and at least one of them is a writelock.

Theorem (Esweran):
S is serializable, if
1) at no time during the execution of S two computations do own conflicting locks and
2) once a computation releases a lock, it can never acquire additional locks again.

concurrency control methods
Classification of basic concurrency control methods

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 19

Distributed System Paradigms (41)

For any pair of computations with C < C', C reaches its lock point when C' is still in its growing phase.
--> C can never become dependent on C'.
--> S is acyclic w.r.t. <* --> S is orderable
The serialization order produced by 2PL can be determined by the order in which the scheduled
computations reach their lock point.

The two-phase lock protocol (2PL):

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 20

Distributed System Paradigms (42)

Timestamping
Timestamps may be generated by concatenating the local time (sequence nr.) with the unique node id.
• computations are ordered w.r.t.their object access according to their timestamps assigned
• a serialization order is selected a priori and a schedule is forced to obey this order, i.e. in the case of

conflicting operations those computations that attempt an out-of-order access are invalidated.
By definition, the resulting schedule is serializable.
Variants:
• invalidations can be omitted if both conflicting operations represent writes (Thomas Write Rule)
• delay the processing of operations to wait for operations with smaller timestamps (conservative

timestamping).

Conflict graph for detecting deadlocks:

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 21

Distributed System Paradigms (43)

•  timestamps are not assigned a priori, but when the first conflict between two computations occurs
(dynamic timestamping)

Pro´s:
• simple algorithm
• due to the a priori selected order no deadlocks can occur
Con´s:
• much more pessimistic leading to unnecessary invalidated computations due to the a priori ordering
• using invalidation instead of blocking could be more expensive
•  writes can only be made effective after the respective computation has terminated

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 22

Models of Distributed Computing (3)

3. Classes of distributed activities

Coordination
It addresses the necessary steps to execute actions on several nodes that contribute to a common goal.

Flow Diagram of Coordination Activities

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 23

Models of Distributed Computing (4)

Sharing
It addresses the necessary steps to ensure the correct execution of actions using shared resources.

Flow Diagram of Sharing Activities

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 24

Models of Distributed Computing (5)

Replication
It addresses the necessary steps to execute the same set of actions on different nodes such that results are
identical.

Flow Diagram of Sharing Activities

active replication: all participants execute the same set of actions in the same order
passive replication: a primary participant only executes the set of actions, the others (backups) only log
 them and receive state updates (checkpoints) from the primary.

omissive fault model: only one result is delivered (used for ensuring availability)
value fault model: only the correct result is delivered (determined by majority voting)

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 25

Models of Distributed Computing (6)

Combining Activities

Example Flow Diagram
(e.g. a distributed database, made of replicated fragments residing on several nodes, accessed by several
users)

