
 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 8

Distributed System Paradigms (30)

Distributed consensus
• A fundamental problem in distributed systems
• Its goal is to make a set of processes (nodes) agree on the achieved global computational state and on

how to proceed

Example: Items, arriving on a belt one at a time, have to be packed by a set of packing machines
Question: Who is going to pick the next item?

Consensus can be reached by collecting a proposal from every machine, ordering
the proposals according to the machine number and selecting the first proposal in that set.

A simple consensus protocol

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 9

Distributed System Paradigms (31)

a) agreement on membership (membership service)
• All members of the group should reach consensus about the current membership (who is in and who not)
view: list of members (active participants) at a given time
First approach: Total order of views + Algorithm similar to the one described before, but,
Load balancing example: A team of servers collects requests from clients (e.g .C), and divides the work
 associated with each request, based on views:= membership of available servers

Ad-Hoc View Change

Problem: Requests were served by different participants based on different views
Solution: Order view changes w.r.t. messages, so that any message is received by all in the same view.

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 10

Distributed System Paradigms (32)

b) view synchrony (virtual synchrony)
Definition:
If a message m is delivered to a process p in view V i , m is also delivered to q in view V i , for all q ε V
--> Before installing a new view, consensus must be reached among all processes of the old view not only

on the membership of Vi+1 , but also on the set of messages to be delivered by all participants in the
old view.

Algorithm for View-Synchronous View Change
• When a process receives a message, it immediately delivers that message
• When it is time to install a new view, all processes stop sending and delivering messages
• The list of messages already delivered in this view is sent to all participants
�• When each process has received all lists, it delivers all messages of the collected lists not yet delivered
• The new view is installed
�• The participants resume accepting and delivering new messages

Example:

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 11

Distributed System Paradigms (33)

c) atomic broadcast
Scenario:
Response to a request not only depends on the membership, but also on the order of previous requests
--> Beside views, messages need to be totally ordered
--> An atomic broadcast protocol ensures that all messages are received by all members in the same order
Expressed in terms of a consensus problem:
All participants must agree on i) whether they delivered the message, ii) where to put it in the order of all

Simple, but inefficient algorithm (Chandra, Toueg):

• Participants do keep but not deliver all received messages
• When it is time to install a new view, all processes exchange their unordered messages kept
• Ordering of all collected messages is done by all participants using some deterministic rule
�• Messages are delivered by that order
• This procedure can be done also periodically

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 12

Distributed System Paradigms (34)

c) replica determinism
Scenario:
Maintaining identical copies of the same process or the same data in several nodes
What is the exact semantics behind? In its most stringent interpretation:
execute all replicas in lock-step, i.e. synchronized at the instruction level
This can be done only in the small scale, using hardware --> not scalable
More generic definition of replica determinism:
Two replicas, departing from the same initial state and subject to the same sequence of inputs should end
up in the same final state and produce the same sequence of outputs.
Realization approaches often used in addition to relying on deterministic programs :
• use atomic broadcast to disseminate the inputs or
• elect one replica to decide and care on the order by which messages should be processed
---> all replicas need to be connected in order to exchange messages
Problem:
Full connectivity cannot be always ensured --->
The communication network may be split in two or more partitions, i.e. nodes in different partitions cannot
communicate with each other --->
The state of replicas in different partitions is likely to diverge, making it impossible to reconcile later on.

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 13

Distributed System Paradigms (35)

�• consistency/availability trade-off
• ensuring strong replica consistency is very expensive, since it requires all updates to be totally ordered

Using a Primary Partition:

State Divergence with Partitioning:

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 14

Distributed System Paradigms (36)

9. Concurrency
Fundamental property of distributed systems allowing to increase utilization and efficiency.
Let O := {o1, … om} be a set of operations and X := {x1, … ,xn} be a set of objects where oi(xj) with
1≤i≤m and 1≤j≤n describes the execution of operation oi on object xj. Then, a computation C := [oi(xj),
…,oi'(xj')] is defined by any finite sequence of operations from O on objects from X where |C| denotes the
length of the computation, i.e. the number of operations to be executed on X.

Now, let us consider several, say p, computations Ck (1≤k≤p) operating on a common object set O. Then,
oi

k(xj) denotes the execution of operation oi on xj within computation Ck.

S := [s1, … ,sl] is called a schedule where each si represents an operation oi
k(xj) and l= ∑k |Ck|, meaning

that S contains all operations of the p computations to be executed in S.

Let a and b be two events. According to the time they occur, t(a) and t(b), resp., we can define a relation <
on a and b as follows: a < b if t(a) < t(b).

A schedule is concurrent if it comprises at least two computations Ci and Ck such that o1
i < o|Ck|

k and o1
k <

o|Ci|
i , meaning that the first operation in both computations is executed before the last operation of

any of the two computations has been executed ---> computations cannot be ordered

Two operations oi
k(xj) and oi’

k’(xj') belonging to two different computations Ck and Ck' in a schedule S

are in conflict if j = j', i.e. if they have to operate on the same object.

 Vorlesung “Verlässliche Verteilte Systeme” WS 09/10 E. Nett
 15

Distributed System Paradigms (37)

C2 failed to deliver a correct result because it has become dependent on the effects of another computation
C1 although both of them were intended to be totally independent from each other.

Incorrect execution of the schedule [o1
1(x1), o2

1(x1), o1
2(x1), o2

2(x2), o3
1(x2), o4

1(x2)]

