
27
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (28)

Note:

Since RM is optimal among all static assignments, an improvement of the

bound for U can be achieved only by using dynamic scheduling algorithms.

Example of a rate-monotic schedule

Heuristics for dealing with sporadic tasks:
• modeling them as pseudo-periodic by defining TR = TRmin

Main drawback: most of the periods are empty --> very low processor utilization
• Adding a periodic server task with high priority to serve the pending sporadic requests (sporadic server)

28
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (29)

Example of an earliest deadline first - schedule

Earliest Deadline First Scheduling Algorithm (EDF)
• designed for static and dynamic scheduling of independent periodic and sporadic tasks
• it is preemptive and based on dynamic priorities
• the task´s priority is inversely related to its absolute deadline ---> tasks with shorter deadlines

have higher priorities
• It is optimal among all priority-based algorithms
• If used for static scheduling, U<= 1 is a sufficient condition for the schedulability test

29
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (30)

Comparison EDF <---> RM by means of an example

30
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (31)

Example of the domino effect

The last example constitutes a best-effort approach
---> no feasibility checking is done

---> no individual task deadline can be guaranteed
---> provides no predictability

Classification of scheduling policies

Several scheduling policies exist, depending on whether
• a system performs schedulability tests at all (if not, only best-effort (no real-time) approach)
• if so, when it is done (on-line versus off-line)
• what type of schedule is produced as a result of the analysis (priority list or calendar)
• whether robustness or fault-tolerance is considered

31
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Estimating Task Execution Times (1)

The Execution Time (ET) of a task depends on the characteristics of
• the hardware architecture
• the operating system
• the programming language

1.1 DMA (Direct Memory Access)
DMA is a technique used by many peripheral devices to directly transfer data between the device and main
memory

Purpose: to relieve the CPU of the task of controlling the I/O transfer
---> CPU and the respective I/O device share the memory bus
---> need for conflict resolution

Most common method: Cycle stealing
Idea: in case of a conflict, the I/O device always gets priority

---> CPU ET of a task cannot be precisely determined
Possible solution: time-slice method
Idea: each memory cycle is split into two adjacent time slots

32
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Estimating Task Execution Times (2)

1.2 Cache

The cache is a fast memory inserted as a buffer between the CPU and the main memory (RAM)
Purpose: to reduce the bad effects on the speed of processes´execution stemming from the wide disparity

between processor and memory cycle times
Problem: It is difficult to determine the success of a cache access (cache hit versus cache miss) since the

cache contents are not easy to predict. Even extensive code analysis does not solve the problem.

Main reason: The existence of conditional branches and/or task preemption's
Solution approaches: - Worst-case analysis resulting in a disabled cache

- Strategic Memory Allocation for Real Time (SMART)

