
17
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (16)

External Synchronization
Respective algorithms are not cooperative, but master-slave.

Simplest method: Multicasting of time by the master (used to synchronize GPS receiver units)

Round-Trip External Synchronization

18
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (16a)

5. Input/Output
It deals with the observation of, and the actuation on, the environment performed by sensors and actuators.

Observation:
The act of acquiring and pre-processing the state of a RT entity, through one or more sensors.

It can be done by
• sampling
• polling
• interrupt

Actuation:
The act of issuing and post-processing a command to change the state of a RT entity, through one ore more
actuators

It can be triggered
• immediate
• deferred
• periodic

19
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (17)

7. Processor Scheduling
Scheduling is concerned with assigning needed resources in order to execute tasks such that the system
meets the timing requirements. Scheduling is the backbone of a RT system and, therefore, is the most
widely researched topic within RT systems.

Policies of Non-RT (general purpose) systems aim at
• fairness
• high performance (throughput)
• high resource utilization

RT systems only aim at
• predictability, if necessary, in detriment of the other aims.

Important timing parameters in executing a task

20
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (18)

Table of generic Timing Parameters specifying instants (events) and intervals (durations)

21
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (19)

W.r.t. the flexibility of tasks regarding their timing constraints and functionality, they can be classified as:

Hard tasks

All timing constraints must be met and optimal functionality is delivered.

Critical tasks

Their activation can be triggered later than the given release time.

Redundant tasks

All timing constraints are met and the delivered functionality(accuracy) is not
optimal (gracefully degraded) but still acceptable (correct in the sense of in
compliance with the overall specification).

Soft (best effort) tasks

Missing the deadlines of soft tasks can be tolerated.

22
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (20)

Classification of scheduling algorithms:

Preemptive
The task being executed can be interrupted at any time in order to assign the
processor to another task according to the used algorithm.

Non-preemptive
A task, once started, is executed by the processor until completion.

Static
Scheduling decisions are based on static (fixed) task parameters.

Dynamic
Scheduling decisions are based on dynamic (possibly changing at system
run-time) task parameters

calendar-based
Tasks are executed according to a resulting calendar (time schedule).

Priority-based
Tasks are executing according to assigned (fixed or dynamically changing) priorities.

Independent
Release time of tasks does not depend on the termination time of other tasks

23
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (21)

Classification of scheduling policies:

Static (off-line) scheduling

schedulability analysis is done off-line, i.e. before run-time

---> the used scheduling algorithm has complete a priori - knowledge about all relevant task parameters,
i.e. a deterministic system and environment is assumed

Dynamic (on-line) scheduling

schedulability analysis is done on-line, i.e. at run-time

---> the used scheduling algorithm must not (cannot) have complete a priori - knowledge about all relevant
task parameters of all tasks

---> provides predictability w.r.t. individual task arrivals by running so-called acceptance tests

(Timing) Fault-Tolerant scheduling
trading predictability and enhanced throughput for potentially degraded functionality of individual tasks

24
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (22)

Schedulability

A set of tasks is schedulable or feasible if all timing constraints (deadlines) are met by some algorithm.

An algorithm is optimal for a given task set if it fails to meet all deadlines only if no other algorithm can
meet all deadlines, i.e. it always generates a feasible schedule if one exists.

Determining whether a given task set is feasible is called schedulability testing. The outcome can be

• sufficient: passing it indicates that it is feasible

• necessary: failing it indicates that it is not feasible

• exact: sufficient and necessary

Utilization-based Tests

• fail, if the generated schedule will use the CPU more than a given percentage

• are sufficient, but not necessary
����

25
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (23)

Processor utilization factor U:
Given a finite set Γof n periodic tasks τι, U is the fraction of processor time spent in the execution of Γ, i.e.

U = Σ Ci/Ti (i = 1,...,n)

Uub (Γ,Α) is the upper bound of U for Γ under a given algorithm A in order to be feasible

U = Uub (Γ,Α) −−> Γ is said to fully utilize the processor under A (full does not mean optimal utilization)

Ulub(A) = min Uub(Γ,Α) is the least upper bound Uub(Γ,Α) for all Γ

26
Vorlesung “Echtzeitsysteme” WS 08/09 E. Nett

Real-Time (Paradigms) (24)

Response Time - based Tests
• determines for each task Tmax by computing WCET + Tint and comparing it with Tdead.

• are exact

Acceptance Tests
• provide predictability w.r.t. individual task arrivals
• are sufficient

Rate-Monotonic Scheduling Algorithm (RM)
• designed for static scheduling of independent periodic tasks (all periods and WCET´s are known)
• the task´s priority is inversely related to its period ---> tasks with smaller periods have higher priorities
• it is preemptive and based on static priorities
• if for all tasks Txmax = TR , it is optimal among all fixed-priority algorithms
• Ulub <= ln2 is a sufficient condition for the schedulability test, Ulub <= 1, if the task set is harmonic,

meaning that all periods are multiples of the smallest period

