Real-Time (Paradigms) (70)

Taxonomy of Medium Access Control - Protocols:

IEEE 802.11 contention free access

A central access point grants access to the medium by polling the stations

Remaining problems

- Messages can be lost, even worse
- Some stations may receive a message, some others may not
- Stations can crash
- Stations can be out of reach
- No timing guarantees are given
- \rightarrow Must make specific fault assumptions for giving any kind of guarantees

Fault Assumptions

- Messages are either lost or delivered within a fixed time bound
- Message losses are bounded by an Omission Degree OD
- Stations may fail (silently)
- Stations may leave/enter the reach of other stations
- The access point can be considered to be stable

Reliable real-time communication can be achieved by using redundancy to tolerate faults

Static vs. Dynamic Redundancy

Static redundancy - Message diffusion

principle: every message is transmitted OD+1 times good: simple, no need to detect message losses bad: large overhead

Dynamic redundancy - Acknowledge/retransmit

principle: every message is only retransmitted if a message loss occurs (maximum OD retransmissions)

good: small overhead for retransmissions

bad: acknowledgements for detecting message loss induce extra overhead Acknowledgment scheme is crucial

Key ideas of the RGC protocol

- Broadcast messages are routed through the access point
	- Membership problem due to limited reach and mobility solved
	- ordering problem solved
- Efficient acknowledgement scheme
	- communication is organized in rounds of length n
	- one ACK field (n bits) acknowledges all messages of the preceding round
	- ACK field is piggy-backed to the broadcast request message
	- if necessary, the access points retransmits the message of the preceding round (at most OD retransmissions).

no extra acknowledgment messages needed !

Operation of the protocol

Timing Analysis

- Polling/broadcast request messages can be lost
- Broadcast messages can be lost
- At most omission degree OD retransmissions required, (OD is dependent on the physical characteristics of the application environment)
- worst case delivery time can be computed

 $(\Delta bc_{max} \approx 2 \times OD \times Around)$ $(\Delta$ *round* := $n \times 3$ t_m)

Example 1: OD = 10, n = 4 stations, t_m = delay for a single message = 2,8 ms \rightarrow worst case delivery time ≈ 680 ms

Example 2: $OD = 15$

 \leftarrow > worst case delivery time = 1016 ms

Vorlesung "Echtzeitsysteme" WS '08/09 E. Nett

Trading Timing Guarantees against Reliability

- Problem: How to achieve better timing guarantees ?
- Observation: applications may afford to loose a (late) messages, if it is guaranteed that all stations reject the message in this case.
- Approach: Allow the application to limit the number of retransmission and guarantee agreement on consistent delivery

User defined resiliency degree

- Limit the number of retransmission by an application defined resiliency degree res(c) (maximum OD)
- If a message is not acknowledged by all stations after res(c) retransmissions, it is rejected.
- The access point puts its decision whether to reject/accept a message in an accept field that is piggy-backed with every broadcast message.

Problem Scenario

- vehicles are forced to stop, even if resource is free
- low throughput
- ⇒apply resource scheduling instead

Vorlesung "Echtzeitsysteme" WS '08/09 E. Nett

Architecture

Scheduling Function - Model

System local informations

The *local state* $s_i z(t)$ of a system s_i comprises all its scheduling relevant parameters The scheduled enter time s_i $_tt_{se}(t)$

Global informations

- The *group* $g(t)$ is the vector of all systems that are within the approaching zone plus the one in the hot spot
- \blacksquare The *global state* $\mathbf{z}(t)$ is the vector of the local states of all systems in **g**(*t*)
- The *plan* **p**(*t*) is the vector of the scheduled enter times of all systems in **g**(*t*)

Domain

 \blacksquare The domain of the scheduling function is the set of all global states

Range

The range of the scheduling function is the set of all plans

Vorlesung "Echtzeitsysteme" WS '08/09 E. Nett

Event Service - Model

Global State Computation

- s_0 can compute s_0 , $z(t_i)$ and s_1 , $z(t_i)$ using F and $z(t_{i-1})$
- s_1 can compute s_0 , $z(t_i)$ and s_1 , $z(t_i)$ using F and $z(t_{i-1})$
- s_0 and s_1 must learn $s_2.z(t_i)$
- s_2 must learn $z(t_{i-1})$

Necessary Communication for Discrete Changes

- *t*: *s*₂ enters the approaching zone, $b\bar{r}$ oadcasts request message rqu(s ₂.*z*(*t*), *t*)
- *t*[']: request is delivered, s_0 broadcasts in-message in(s_2 , s_2 , $z(t)$, t , $z(t_{i-1})$, t_{i-1})
- **•** t_i : in-message is delivered, $\mathbf{z}(t_i)$ is computed and delivered to the scheduling function