
23
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (59)

Impact of TTRT on available bandwidth (Throughput):
Token algorithms incur the following overheads constantly per cycle, regardless of the data volume
transmitted:
Medium progagation delay: It takes a certain time for a message to propagate from one node to the next.
Token transmission time: Sending out the token takes some time. Since the token is usually much smaller
than a frame that contains information, this overhead is typically very small.
Token capture delay: There is usually some time lag between when a node captures the token and when it
begins transmitting.
Network interface latency: At each network interface, the input is retransmitted to the output (except for
packets that are removed from the ring). The network interface latency is the time between when a bit is
received by the network interface and when it is retransmitted.

Let the overall overhead of one cycle be O --> the useful time for message transmission per cycle is TTRT-O.
The utilization of the medium is upper-bounded by

--> the throughput is reduced to ΨB (B is the bandwidth bits/time).
Trade-off:

A smaller TTRT leads to a smaller upper bound of the token delay, but also to a smaller throughput ΨB.

TTRT
OTTRT −

=Ψ

24
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (60)

Analysis of the Timed-Token Protocol

Theorem 2:
The total duration of L consecutive cycles of the token is upper bounded by (L+1)TTRT, for L = 1,2,...

Corollary 1: Over any interval of duration I, node ni will be able to transmit at least:

ii
i cBOTTRTf

TTRT
P

≥−⎥⎦
⎥

⎢⎣
⎢ −)(1

2
iPTTRT ≤ (1)

This equation can be solved for fi , the upper bound for ci .
Both equations are necessary and sufficient conditions for node ni to be able to transmit ci bits of real-time
data every Pi seconds.

Corollary 2: If a node ni wants to send with a period of Pi:

Supporting periodic messages

Corollary 3: (Computation of the synchronous quota (fraction of time reserved for synchronous messages ci))

If node ni has to send ci bits per period Pi, then

25
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (61)

Initialization of the Timed-Token Protocol

• In the 1. cycle, each node ni sends out its desired TTRT (desired Pi/2 if periodic tasks)

• The smallest requested TTRT is chosen

• The node having requested the smallest TTRT generates the token. If two nodes request the same TTRT,

the tie is broken by the node-id

• The token site computes and distributes the fraction fi

• During the 2. cycle of the token only synchronous packets are permitted

• Now the protocol is in the steady state

26
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (61a)

Fault-Tolerance
The Timed-Token protocol is vulnerable if a token gets lost.
Token loss is easily detected by each node ni when C(m, i) exceeds 2TTRT.
In case of token-loss, new initialization starts by sending claim-token packets

Handling the claim-token packet

27
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (62)

Static TDMA (Time Domain Multiplexed Access)

Medium access:
Each node is allowed to send messages only during a predetermined time span, called its TDMA slot. The
allocation of these slots is determined at system’s design time. During run-time the nodes maintain a global
clock and each nodes exactly knows which messages can be expected in the next slot.

Pros:
• Hard real-time capable by construction
• No control messages (e.g. tokens) or bus arbitration required
• A-priori knowledge can be used for fault detection

Cons:
• No flexibility, everything must be known a-priori (static scheduling required)
• Can be inefficient (e.g. all sporadic messages must be mapped to periodic slots)
• raises problems (waste or lack of bandwidth) when number of users varies
• inherently inefficient for most general-purpose computer systems, since data traffic is extremely

bursty (1000:1 ratios)
• Only real-time traffic considered

Implementation of static TDMA : TTP/C (Time-Triggered Protocol)

28
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (64)

Structure of a TTA node computer:

29
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (64a)

Fault-Handling Strategy

TTP assumes that a node either sends
• a correct message at the correct (specified) point in time
• no message (crash or omission failure)
• To tolerate message losses, each message is send twice in one FTU slot (one produced by each node) and

TTP uses 2 independent wires for transmission ---> 4 physical copies of each message are transmitted
• a detectably incorrect message at the correct point in time
• a correct message at an incorrect point in time

– Babbling Idiot Avoidance
means the spontaneous transmission of senseless messages at arbitrary points in time by Bus Guardians:
If a node tries to send a message outside its TDMA slot, a separate controller (the “Bus Guardian”, one
per network wire) terminates the operation and initiates self-check and recovery of the node

30
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (65)

Polled Bus Protocol

Medium access:
The bus maintains a busy-line. This line is used for for priority-based bus arbitration and during transmission
for enforcing mutual exclusion on the broadcast medium.

Busy-line: executes wired-OR
• the line has two states dominant and recessive
• if one node assigns dominant to the busy-line, all node perceive dominant
• the time on the bus is divided into equally long bit-times (slots)
• one bit-time is long enough to propagate the signal to all participants

---> Bit-time is a function of the bus-length

A DCB
R D R DR DD D

Mutual exclusion:
• During a message transmission the sending node keeps the busy signal dominant
• As long as a node perceives the busy signal dominant, it doesn’t start a new transmission.

31
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (66)

Bus-arbitration:
• A node starts sending if it detects no dominant signal on the busy-line for one bit-time.
• Then it starts sending a unique bit-string (1 = dominant, 0 =recessive) of predefined length (the binary

coding (poll number) of the messages’ priority) on the busy-line, one bit per bit-time
• At the same time it listens to the received value. If it receives a different value that the one it sends, it

aborts arbitration.
• If all bit-values have been transmitted successfully, it keeps the busy-line dominant and sends its

message.
• Type CSMA/CD+CR (“Collision Detection and Collision Resolution”)

What happens if two nodes A and B are starting arbitration simultaneously?

the message priority must be unique!--->
• Global assignment of priorities for each message and nodes a-priori or dynamically by a priority server
• Locally: Priorities are tuples (Prio, Node-id), only the Node-id is statically assigned and unique

32
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (67)

Other solutions:
- deadline-driven scheme
- combined deadline-driven and priority scheme

Analysis of the Polled Bus Protocol
This Protocol implements a priority-based, non-preemptive resource access
Claim: A message with the highest priority is at most delayed for one message having maximal length.
Proof: a) If the busy-line is recessive, the message with the highest priority can be sent immediately as it

will win any arbitration phase.
b) If the busy-line is dominant, the sending node has to wait for for the remainder of the ongoing

transmission (i.e. at most one max. message length) until the busy-line becomes recessive
again, then see a)

---> This algorithm is acceptable in case of a small bit-time of the bus

Is there any guarantee that can be given for messages with lower priorities?
Each message can be delayed by

a) a message already on the wire.
b) by any pending message with a higher priority.

33
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (68)

Implementation of the Polled Bus Protocol on a CAN-Bus

CAN (Control Area Network) is a fieldbus designed by BOSCH. It has the character of a broadcast
communication medium where a number of processors are connected to the bus via an controller interface.

CAN Architecture

Aim is to bound the worst-case response time (latency) of a given real-time message type.

Features of the CAN-Bus
- Priority (message-identifier) length 11 bit or 29 bit
- Data-length max. 8 bytes
- Bit-time 1µs - 0.1 ms => Bandwidth 1MB/s - 10kB/s
- Bus-Length 30 m - 1 km

34
Vorlesung “Echtzeitsysteme” WS ‘08/09 E. Nett

Real-Time (Paradigms) (69)

Theorem: Given that for each message m the maximal transmission time Cm and the minimal Period Tm is
known, the worst-case response time Rm of a message m (defined as the longest time between
the start of a task queuing m and the latest time m arrives at the destination stations) is bounded
by:

Rm = Cm + wm

where

hp(m) is the set of messages with a higher priority than m
lp(m) is the set of messages with a lower priority than m
wm is the waiting time (for messages with higher priority) that m remains queued before it is transmitted
on the medium
Bm is the time that m is blocked by a lower priority message on the medium that started before m became
queued

---> For each message a worst case delay can be computed!

