Real-Time (Paradigms) (47)

Memory: Memory Access Protocols
Tasks competing for memory access (become interdependent, a common phenomenon especially in

distributed systems

Example:

computation 1 object X, checking account computation 2
object x 2: saving account

x1=$ 9 000

X_=$ 30 000
Sk

01.—. read x 1

subtract $ 9 000

02= write x 1

03= read x 2
$ 1000 o =read x
add $ 8 000 1 1 1
$ 30 000 o= read x
ofF writex £ 2
add up
Sum =
31000 print sum

Vorlesung “Echtzeitsysteme” WS “08/09 E. Nett

Real-Time (Paradigms) (47a)

Realizing mutual exclusion by semaphores when accessing an exclusive resource:

I B J2
= ' resource | : e
= O Ry == |

= = - —y : N — . Bl
bowait(Sk) A 7. , ..y waiSyx)
' + A) : '
' nse ' . use '
J resource ' . resource ¢
' R k.. ' ; R i :
Lo : b
} signal(Sx) v signal(Sk) |

N e e

scheduling
activation { acceptance | termination
B s
test
preemption
NO -’ signal wait on

free resource - busy resource

Vorlesung “Echtzeitsysteme” WS *08/09 E. Nett

Real-Time (Paradigms) (47a)

---> determining memory access times as part of the overall execution time becomes extremely difficult
Why?

Example of blocking:

BEEESR normal execution

critical section

J; blocked

——> We still can compute an upper bound on the execution time

Vorlesung “Echtzeitsysteme” WS *08/09 E. Nett

Real-Time (Paradigms) (48)

Example of priority inversion:

normal execution

critical section

J, blocked

Effects of priority inversion do affect predictability!

Vorlesung “Echtzeitsysteme” WS *08/09 E. Nett

Real-Time (Paradigms) (48a)

Scheduling with non-preemptive critical sections

normal execution

critical section

T J| blocked

Vorlesung “Echtzeitsysteme” WS *08/09 E. Nett

Real-Time (Paradigms) (50a)

Definition of the priority inheritance protocol:

Jobs are scheduled based on their active priorities. Jobs with the same
priority are executed in a First Come First Served discipline.

When job J; tries to enter a critical section z; ; and resource R; ; is already
held by a lower-priority job, J; will be blocked. J; is said to be blocked by
the task that holds the resource. Otherwise, J; enters the critical section
Zi,g- '

When a job J; is blocked on a semaphore, it transmits its active priority
to the job, say Ji, that holds that semaphore. Hence, J; resumes and
executes the rest of its critical section with a priority pr = pi. Ji is said
to inherit the priority of J;. In general, a task inherits the highest priority
of the jobs blocked by it.

When J; exits a critical section, it unlocks the semaphore, and the highest-
priority job, if any, blocked on that semaphore is awakened. Moreover, the
active priority of Jix is updated as follows: if no other jobs are blocked by
Je, Prx is set to its nominal priority Py, otherwise it is set to the highest
priority of the jobs blocked by J:.

Priority inheritance is transitive; t.ha.t is, if a job Jsz blocks a job Js, a.nd
Ja blocks a job J;, then J3 inherits the priority of J; via Js.

Vorlesung “Echtzeitsysteme” WS *08/09 E. Nett 6

Real-Time (Paradigms) (49)

Application Example :

Fart
W)

It happened on Mars!

Using priority inheritance can prevent priority inversion.

It introduces dynamic priorities defined as follows:
the dynamic priority of a task at time t is the maximum of its
initial fixed priority and the priorities of all tasks blocked on

account of it at time t.

Vorlesung “Echtzeitsysteme” WS “08/09

Real-Time (Paradigms) (50)

Example of a priority inheritance protocol:

normal execution direct blocking

., t- !
critical section / push-through blocking

I /
G

Two kinds of blocking can be distinguished:

e direct blocking
e push-through blocking

Vorlesung “Echtzeitsysteme” WS *08/09 E. Nett

Real-Time (Paradigms) (50a)

The same example using priority inheritance:

apeds]

-k

[X

Lad
1)

S

Ll

)

1. The meteo task (L) runs with priority (, acquires the mutez and publishes

2. The dispatcher task (H) runs with priority h: H preempts L, tries to
acquire the mutex and blocks on it, awaiting for the meteo task L, which
runs again inheriting H s priority, h.

3. The communications task (M), with priority m, becomes ready for eze-
cution: M waits for L, since h (current pri. of L) is higher than m.

o 4. L finishes and releases the mutez unblocking H, which grabs the processor
(h > m), acquires the mutez, and runs to completion. Then, M runs.

o Conclusion: H had the minimum blocking possible: waiting for L to finish.

Vorlesung “Echtzeitsysteme” WS *08/09 E. Nett

Resource Access Protocols (6)
Properties of the priority inheritance protocol :

‘Lemma 7.3 If there are n lower-priority jobs that can block a job J;, then J;
can be blocked for at most the duration of n critical sections (one for each of
the n lower-priority jobs), regardless of the number of semaphores used by J;.

‘Lemma 7.4 If there are m distinct semaphores that can block a job J;, then

J; can be blocked for at most the duration of m critical sections, one for each
of the m semaphores. |

Theorem 7.1 (Sha-Rajkumar-Lehoczky) Under the Priority Inheritance
Protocol, a job J can be blocked for at most the duration of min(n,m) critical

sections, where n is the number of lower-priority jobs that could block J and m
is the number of distinct semaphores that can be used to block J.

Theorem 7.2 A set of n periodic tasks using the Priority Inheritance Protocol
can be scheduled by the Rate-Monotonic algorithm if

Vi, 1<i<n, > g"’ + ff;‘ < i(2VF —1). (7.2)
k i

Vorlesung “Echtzeitsysteme”

10
WS “08/09 E. Nett

