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Abstract. A conventional autonomous mobile robot is introduced. The main idea is the integration
of many conventional and sophisticated sensor fusion techniques, introduced by several authors in
recent years. We show the actual possibility of integrating all these techniques together, rather than
analyzing implementation details. The topics of multisensor fusion, observation integration and sen-
sor coordination are widely used throuhout the article. The final goal is to demonstrate the validity of
both mathematical and artificial intelligence techniques in guaranteeing vehicle survival in a dynamic
environment, while the robot carries out a specific task. We review conventional techniques for the
management of uncertainty while we describe an implementation of a mobile robot which combines
on-line heterogeneous sensors in its navigation and localisation tasks.
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1. Introduction

During the last decade, the use of intelligent control has increased in robotics.
Fuzzy logic, neural networks, genetic algorithms, and expert systems have been
used in control and planning tasks, especially in the field of mobile robotics. Nowa-
days the main goal is to build autonomous systems. But uncertainty about a robot’s
location and information from the environment makes it very difficult to achieve
complete autonomy in real applications, without auxiliary techniques that also have
a sound theoretical foundation. The full integration of both kind of techniques,
artificial intelligence (AI) and mathematics, is not easy.

A mobile robot may be considered as an intelligent autonomous system (IAS)
in the sense that:

• The complete navigation system resides on an on-board computer, and the
vehicle is completely wireless (autonomy).

• The robot has some kind of reasoning capability which allows it to make its
own decisions, and to appropriately select, fuse and integrate heterogeneous
sensor data (intelligence).

The main task of our robot is to reach a goal, following a path. But the intelligence
of such an IAS could be reduced to planning and control if uncertainty were not
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present in the sensors or in the environment. If we restrict planning to the decom-
position of a mission into elemental tasks, or to the planning of a path between
two points, given a map of the environment, there is no uncertainty to take into
account. On the other hand, the control system calculates the appropiate velocity
commands to follow the reference path, and uncertainty is present in the odometric
and navigation sensors.

Without precise sensor data, control objectives will never be reached. To cope
with uncertainty modelling in mobile robotics, well-known state estimation (locali-
sation) and navigation algorithms exist (Kalman filter,probability theory, Dempster–
Shafer theory, decision theory, fuzzy logic, etc.).

The contribution of this work isthe fusion of heterogeneous sensors in a concrete
mobile robot (Matia et al. [6]) which uses all its sensorial capability to reduce
uncertainty while it navigates, avoiding obstacles, integrating new observations to
refresh environment maps, and coordinating vision systems to improve location
estimation. Advanced robot control techniques are complemented with AI in the
control module, using fuzzy logic and/or neural networks.

2. Integration of Sensors and Problem Solving Tasks

The following list represents the use of each sensor in our mobile platform:
1. Sonars:

– Occupancy grid maps;
– Reactive control.

2. Color vision:
– Localisation.

3. Active vision:
– Geometric maps;
– Reactive control;
– Localisation.

Sonars are used for map building and reactive navigation. A color camera is used
for vehicle localisation, and a b/w camera coupled with an infrared laser is used for
map building, reactive navigation and localisation.

Furthermore, the algorithms used in the three previous tasks (map building,
navigation and localisation) depend on the kind of sensor we use. For example,
occupancy grid maps differ from geometric maps in both their building algorithms
and their use. Localization with the color camera is static (the vehicle is completly
stopped), while localisation with the b/w camera is dynamic. Finally, several nav-
igation controllers use sonars, while others use both sonars and the active vision
system. In this other list we show how several planning algorithms are needed to
integrate several tasks which use different kind of sensors:
1. Path planning:

– Occupancy grid maps;
– Geometric maps.
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2. Navigation planning:
– Reactive control with sonars;
– Reactive control with active vision.

3. Localisation planning:
– State estimation with color vision;
– State estimation with active vivion.

3. The Mobile Robot and its Environment

Figure 1 shows a mobile robot. The mobile platform is a Robuter vehicle from
the French company Robosoft. The perception system is composed of: (i) a ring
of 24 sonars used for reactive navigation and cell map generation, (ii) an infrared
laser diode and an infrared camera situated in front of the robot, used for control,
localisation and geometric map building, and (iii) a CCD color camera with pan
and tilt movements situated on the top of the robot, used for localisation.

The environment is a 2D room with known fixed obstacles, fixed beacons with
known 3D localisation, and possible unknown obstacles.

3.1. ENVIRONMENT MODELS

Two different environment models are used: an occupancy grid and a geometric
model. In the first one, the 2D environment is divided into a grid with an occupancy
value: 0 for empty and 1 for occupied. A variant of this model is quadtrees, in which
the initial space is recursively divided (if necessary) into four equal parts until all
objects fill a cell.

In a 2D geometric model, each object is represented by a set of segments (Ay-
ache and Faugeras [1]). Each line is represented by two parameters: a distanced

and an angleα. The path planning module of our mobile robot uses this geometric
model with two different algorithms: Voronoi diagrams and visibility graphs. The
planner decides when to use each algorithm. While visibility graphs always gen-
erate the shortest path, Voronoi diagrams give better results in environments with
high obstacle density.

3.2. SENSOR MODELS

The information given by each sensor is modeled to compare the real measure-
ments with the estimates. This will allow later improvement of sensor information.
Since all sensor model parameters are more or less estimated, a probabilistic fea-
ture must be added to the sensor model to represent the certainty of the measure
(Durrant-White [4]).

The odometric model corresponds with the kinematic model of the mobile
platform:

x(k + 1) = f
(
k, x(k),u(k)

)+ v(k), wherexT(k) = [x(k), y(k), θ(k)]
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Figure 1. The mobile platform.

is the robot location (oriented position) at instantk, f is the kinematic model,u(k)
is the velocity command vector, andv(k) is the model noise vector (uncertainty is
included here).

Sonarsare usually distributed along a ring (see Figure 2). Thesonarsmodel
follows:

p
(
z(k) = z | l) = 1√

2πσ
exp

(
− (z− l)

2

2σ 2

)
, (1)

wherep is the probability density function (so uncertainty is also considered),z(k)

is the sensor measure,l is the distance of the closest object andσ is a parameter to
be determined empirically. In the case of the occupancy grid model, uncertainty is
refreshed using Bayes’ theorem (Elfes [5]):

P
(
si(k + 1) | z(k + 1)

) = p(z(k + 1) | si(k))P (si(k) | z(k))∑
si
p(z(k + 1) | si(k))P (si(k) | z(k)), (2)

JIN1434S.tex; 21/04/1998; 8:57; p.4
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Figure 2. Sonar ring.

Figure 3. Probabilistic map.

JIN1434S.tex; 21/04/1998; 8:57; p.5
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Figure 4. Camera-infrared laser. Side view.

wheresi(k) is the state (occupied or free) of celli at instantk andP states for
probability. An example of a sonar map, using a 24 sonar ring, is shown in Figure 3.

The setcamera-infrared laser supplies a set of infrared light points in the
image framexI (k), which may be transformed into the robot coordinate frame
xR(k). The noiseless equations follow:

xR(k) = xI (k)+D1+ (yI (k)/((1+ gr2(k))f ))tanθ

tanθ − yI (k)/((1+ gr2(k)))f
+ LX, (3)

yR(k) = yI (k)+ xR(k)xI (k)

(1+ gr2(k))f cosθ
+ LY , (4)

whereLX andLY are the horizontal coordinates of the camara,f is the focal
distance,D is its height,θ is the camera angle,g is the image distortion factor, and
r2(k) = x2

I (k)+ y2
I (k) (see Figure 4).

The robot coordinate frame must be transformed later into the origin coordinate
framexO(k). Again the noiseless equation follows:

xO(k) =
[
x(k)

y(k)

]
+
[

cosθ(k) sinθ(k)
− sinθ(k) cosθ(k)

]
xR(k). (5)

From all the light points, a segment extraction is carried out (see Figure 5), so a set
of measured segments(d, α) is obtained from the modelz(k) = h(k, x(k))+w(k),
wherezT(k) = [d(k), α(k)] is the segment position at instantk, h is the sensor
model,x(k) is the robot location, andw(k) is the model noise vector (measurement
uncertainty).

The CCD color camera is used to measure the 3D positionxB(k) of several
artificial beacons. Again the beacon corrdinates are transformed into the origin
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Figure 5. Camera-infrared laser. Upper view.

coordinate frame through an equation similar to (5). The sensor model also has
the formz(k) = h(k, x(k))+ w(k). Special attention must be paid to the fact that
the three perception systems must be previously calibrated to minimize uncertainty
in the model parameters. Sonars may be calibrated for large or small ranges, and
camera parameters must be estimated to make proper use of the equations shown
in this section.

4. State Estimation

The control module must keep an accurate estimate of the mobile robot’s location
at each moment. This state estimatex̂(k) is obtained using the extended Kalman
filter. The algorithm works by integrating all sensor readings into a more precise
measure which allows the robot’s state to be predicted.
Three levels of state estimation are available:

• The odometry system, which gives an initial but unaccurate estimate of the
location based on the last position and the encoders’ readings.

• The set camera-infrared laser, which uses a map of the environment and com-
pares it with the light point measurements.

• The CCD color camera, which uses the known locations of several artificial
beacons and compares them with the information obtained from the actual
image.

The incomming sensor readings are integrated (Crowley [3]) as follows. While
the robot is moving, following a path or avoiding an obstacle, the incoming state
from the odometry system̂x(k | k) is improved on-line by integrating the laser
measurements. The extended Kalman filter has four steps in each cycle:
1. Prediction of new measurements:

x̂(k + 1 | k) = f
(
k, x̂(k | k),u(k)),

P (k + 1 | k) = Fx̂(k)P (k | k)FT
x̂ (k),

ẑ(k + 1 | k) = h
(
k + 1, x̂(k + 1 | k)),

whereFx̂ is the Jacobian matrix off, andP is the covariance matrix of̂x.
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2. Observation of new measurements:z(k + 1).

3. Matching of predicted and observed measurements:

ν(k + 1) = z(k + 1)− z(k + 1 | k),
S(k + 1) = Hx(k + 1)P (k + 1 | k)HT

x (k + 1),

whereν is the measurement innovation andS is its covariance matrix.

4. State estimation:

W(k + 1) = P(k + 1 | k)HT
xS−1(k + 1),

x̂(k + 1 | k + 1) = x̂(k + 1 | k)+W(k + 1)ν(k + 1),

P(k + 1 | k + 1) = P(k + 1 | k)−W(k + 1)S(k + 1)WT(k + 1),

whereW(k + 1) is the Kalman filter gain.

In the case of the set camera-infrared laser, the estimated measurementsẑ(k+1 | k)
are the segments from the static known map, while the real measurementsz(k+1)
are the segments extracted from the real world with the laser. If the difference be-
tween both,ν(k+1), is less than a fixed value (applying the Mahalanobis distance),
we can use the Kalman filter to obtain the new positionx̂(k + 1 | k + 1). If not,
this means that a new object has been detected in front of the vehicle, so we may
use probabilistic techniques (Bayesian) to add these new segments to the map (see
Section 6).

In the case of the color camera, artificial vision techniques are used. From time
to time (when the uncertaintyP(k | k) is high enough) the vehicle searches for
landmarks, with known coordinates in the 3D environment. These beacons may be
artificial (see Figure 6) or natural (e.g., a window).

The color camera looks towards them, extracts from the image the desired fea-
tures and measures their positionz(k + 1). As in the previous case, by comparing
this position with the model̂z(k+1 | k), the estimate of the mobile robot’s location
is improved.

Figure 6. Artificial beacons.
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5. Multi-sensor Fusion in Navigation

An intelligent control module resides in the mobile robot for safe navigation. Its
main goal is to follow a path with real time obstacle avoidance. Two control par-
adigms are available to the control supervisor: fuzzy logic for static obstacles
and neural networks for multirobot systems. We will discuss the first case, since
multirobot systems are not a topic of this article.

Our mobile robot uses the reactive architecture AFREB: Adaptive Fusion of
Reactive Behaviors (Moreno et al. [7]). This is composed of two levels:

• The lowest one includes elemental controllers which model primitive behav-
iours (Brooks [2]) asfollow a path, follow obstacle contour(left or right), and
turn (left or right).

• A fuzzy decision module which fuses the primitive behaviours originating an
emergent behaviour (following a path with obstacle avoidance).

Figure 7 shows the reactive control scheme. The decision module generates a
weightai(k) for each primitive behaviouri, so they may be fused as follows:

u(k) =
∑
ai(k)ui(k)∑
ai(k)

, (6)

whereui(k) is the velocity command of the primitive behaviouri, andu(k) is the
final velocity command for the mobile robot. The fusion supervisor must determine
the most adequate value for the weightsai . The fusion rules are as follows:

IF the minimum distanceIS mediumAND the sensorIS on the right side

THEN the weight of thefollow pathbehaviourIS medium

AND the weight of theright contour followingbehaviourIS medium.

In this case, 24 sonars are fused into the regions left, left front, front, right front and
right. A second fuzzy decision module which implements heterogeneous sensor
fusion of sonar and laser measurements is also available. The rules try to model the
following reasoning:

IF the front spaceIS wide enough (laser)

THEN center the robot (sonars).

Figure 7. Reactive control architecture.
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6. Map Building and Sensor Planning

In Section 3 we suggested the possibility of updating probability grids by integrat-
ing sonar information. Now we are going to discuss briefly how to integrate new
objects into a geometric map (Zhang and Faugeras [8]).

In Section 4 we said that only new laser measurements which are inside Maha-
lanobis distance are to be fused into the Kalman filter. But the remaining segments
may be used for map building. The steps for map construction on the fly follow:
1. Fusion of light points into segments.
2. Fusion of similar segments.
3. Cut of extra large segments.
4. Dynamic refreshment of segment certainty.
5. Elimination of segments with very low certainty.
6. Fusion of segments with very high certainty into objects.

Figure 8 shows some of the previous steps. On the other hand, examples of sen-
sor planning and coordination may be found in the case of two mobile robots which
synchronize their sonars when their position is close, to avoid interferences. But our
mobile robot uses sensor planning for the coordination of multiple sensors (sonars
and cameras). The two methods for location estimation are to be coordinated:

• The use of structured light.
• The use of artificial vision.

While the robot is moving, a continuous localisation is being carried out with the
laser. When the sensor planner detects an excessive increase in the uncertainty

Figure 8. Segment building.
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Figure 9. Sensor coordination for map building and localisation.

Figure 10. Complete sensor planning and control scheme.

(perhaps no segments are near the front of the robot), it stops the robot and takes ad-
vantage of the localisation with the color camera. After uncertainty has decreased,
the planner allows the robot to recover its previous movement.

Most of the work inside the planner was to synchronize the only image process-
ing board available, to use both cameras on-line. Figure 9 shows the robot following
a path (the elipse represents the position uncertainty) while it uses the laser for lo-
calisation and the sonars for obstacle avoidance. From time to time, the localisation
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with the color camera forces a decrease in the uncertainty. At the same time, new
obstacles are being added to the initial map.

The results are more impressive with both localisation methods integrated, rather
than using them separately. Figure 10 shows the complete scheme of the control
and planning system of the mobile robot.

7. Conclusions

We have demonstrated a mobile robot which takes account of heterogeneous sensor
information, and fuses it to achieve a control task. Several features follow:

• Reactive control for path following with obstacle avoidance by means of
multisensor fusion.

• State estimation by fusion of odometric and camera observations.
• Dynamic building of environment geometric models, as well as integration of

new objects.
• Planning and coordination of continuous and discrete localisation systems.

With these results in mind, we conclude that the mathematical methods described
above, appropiately combined with AI techniques, and the fusion of multiple sen-
sor data, allow a conventional IAS to cope with the existent uncertainty in its
sensors and in the surounding environment.
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