Public Key Systems (2)

The RSA algorithm

Two components:

- Selecting the keys
- Applying the encryption and decryption algorithm

Selecting the keys (by Bob):

1. Choose two large primes, p and q
2. Compute $n=p \times q$ and $z=(p-1) \times(q-1)$.
3. Choose a number relatively prime to z, smaller than n and call it e (e is used for encryption).
4. Find d such that exd -1 is dividable by z without any remainder ($\mathrm{ed} \bmod \mathrm{z}=1$) (d stands for decryption) .
5. The public key is (n, e), the private key is (n, d).

Encryption (by Alice) of a bit pattern (number) m such that $m<n$ by means of Bob’s public key (n, e).
The resulting cipher c is:
$c=m^{e} \bmod n$

Decryption (by Bob) of c by means of his private key (n, d) in order to get the plaintext m :
$m=c^{d} \bmod n$

Public Key Systems (3)

Example of the RSA algorithm

$p=5, q=7$---> $n=35, z=24$. Further, Bob selects $e=5, d=29$ (5*29-1 can be divided by 24)
----> public key of Bob: $(35,5)$, private key of Bob: $(35,29)$
Alice wants to send the message "LOVE" to Bob by encrypting each letter separately and interpreting each letter as the corresponding number (a maps to $1, \ldots .$. , z maps to 26)

Klartextbuchstabe	m : numerische Darstellung	$m^{\text {e }}$	Chiffretext $c=m^{e} \bmod n$
L	12	248832	17
0	15	759375	15
V	22	5153632	22
E	5	3125	10

Chiffretext c	c^{d}	Chiff: retext $m=c^{d}$ $\bmod n$	Klartext-buchstabe
17	481968572106750915091411825223072000	12	I
15	12783403948858939111232757568359400	15	-
22	$8.51643319086537701195619449972111 e+38$	22	v
10	100000000000000000000000000000	5	e

Authentication

Authentication Protocols

- technique by which a process verifies that its actual communication partner is who it is supposed to be
- normally done before the partners start to exchange data messages, e.g. e-mails

Version with symmetric keys

Version with public keys

Digital Signatures (1)

Problem:

Finding an electronic adequate for the handwritten signature such that one party can send a signed message to another party in such a way that the following conditions hold:

- The receiver can verify the claimed identity of the sender (authentication)
- The sender later cannot repudiate having sent his message (nonrepudiation)
- The contents of the message cannot have been modified, e.g. by the receiver himself (integrity)

Solution 1: Creation of digital signatures by means of public keys

Drawback:
It couples secrecy on the one side with the triple (authentication, nonrepudiation, integrity) on the other side
---> it needs, often unnecissarily, too much computational overhead for encrypting/decrypting

Digital Signatures (2)

Solution 2: Creation of digital signatures without encrypting the whole text.
Idea: Using a so-called message digests to create a "fingerprint" from any plaintext.
Message Digest $H(m)$: a message m of any length is mapped to a bit string $H(m)$ of fixed length such that

- $\quad H(m)$ is much shorter than m and is computed much easier (faster) than encrypting m
- it is almost impossible to find $m^{\prime} \ddagger m$ and $H(m)=H\left(m^{\prime}\right)$ (ensuring data integrity)

Now, in order to get the effect of a digital signature, we only have to encrypt (sign) the digest of a message.

Sending a digitally signed message

Digital Signatures (3)

Checking a digitally signed message

The most widely used message digest functions are MD5 (128bits long) and SHA-1 (160 bit long). They operate by mangling bits in a sufficiently complicated way such that every output bit (bit of the digest) is affected by (dependent on) some input bit (bit of the message).

