Application Layer (1)

Functionality:

- providing applications (e-mail, Web service, USENET, ftp etc)
- providing support protocols to allow the real applications to function properly (e.g. HTTP for Web appl.)
 - *security* comprising a large number of concepts and protocols (PGP, SSL)
 - DNS (Distributed Name Service) handling naming within the Internet
 - network management (SNMP)

Network security nowadays is regarded as one of the biggest problems for upcoming Internet applications

Objective:

providing secure Internet applications like

- secure e-mail system (PGP and extensions (S/MIME))
- secure e-commerce transactions (SSL and extensions (TLS))

Network Security (1)

Secure communication in general addresses four different topics:

- secrecy (Vertraulichkeit, Geheimhaltung): keeping information secret
- *authentication (Authentifikation)*: determining whom you are talking to before revealing information
- *nonrepudiation (Verbindlichkeit)*: ensuring trustworthiness between the communication partners
- *integrity (Datenintegrität)*: ensuring the originality of received messages (not being modified)

Solutions to all problem areas are mainly based on **cryptographic** (Greek: secret writing) principles Historically, until the second half of the 20th century, only 2 human areas have used and contributed to the art of cryptography:

- military
- diplomacy

Today, **economy** is becoming the most important application area where cryptography is used.

Network Security (2)

Representatives for sender, recipient, and intruder

The encryption model (1):

Network Security (3)

The encryption model (2):

Cryptology denotes

• **cryptography:**= the art of devising ciphers

and

• **cryptanalysis:=** the art of decoding (breaking) ciphers

Secrecy (1)

Symmetric Key System:
Keys of Alice and Bob are identical and secret *Public Key System:*Both, Alice and Bob have a pair of keys, one is public, the other is only known by its holder.

1. Symmetric Key Systems (old)

Traditional encryption methods have been divided historically into two categories:

- substitution ciphers (preserve the order of the plaintext symbols but disguise them)
- transposition ciphers (reorders the plaintext symbols but do not disguise them)

Ancient and simple substitution cipher: Caesar's cipher

The ciphertext alphabet results from a shift of k letters in the plaintext alphabet (key:=k).

Generalization of Caesar's chiffre: monoalphabetic substitution

Each letter or group of letters is replaced by another letter or group of letters to disguise it

Example for a monoalphabetic substitution

plaintext:	a	b	C	d	e	fg	g]	h	i j	k	1	m	n	0	р	q	r	S	t	u	V	W	Х	У	Z
ciphertext:	Q	W	E	R	T	ΥU	JI	C) P	A	S	D	F	G	Η	J	K	L	Ζ	X	С	V	B	N 1	М

Vorlesung "Kommunikation und Netze" SS '10 E. Nett

Secrecy (1a)

Two main approaches of crypto analysts to break these type of ciphers

- exploiting statistical properties of natural languages (cipher text only attack)
- guessing a probable word or phrase (known plaintext attack)

Example for the second approach:

CTBMN BYCTC BTJDS QXBNS GSTJC BTSW*X CTQTZ CQV*UJ QJSGS TJQZZ MNQJS VLNSX VSZJU JDSTS JQUUS JUBXJ DSKSU JSNTK BGAQJ ZBGYQ TLCTZ BNYBN QJSW

Secrecy (2)

Transposition ciphers

Instead of disguising letters they are reordered

Example for a columnar transposition

Μ	E	G	<u>A</u>	В	U	С	K	
7	4	5	1	2	8	3	6	
р	Ι	е	а	s	е	t	r	Plaintext
а	n	s	f	е	r	0	n	pleasetransferonemilliondollarsto
е	m	i	Ι	Ι	i	0	n	myswissbankaccountsixtwotwo
d	0	Ι	Ι	а	r	s	t	Ciphertext
0	m	у	s	w	i	s	s	
b	а	n	k	а	с	с	0	AFLLSKSOSELAWAIATOOSSCTCLNMOMANT
u	n	t	s	i	х	t	w	
0	t	w	о	а	b	с	d	

Secrecy (3)

2a) Symmetric Key Systems (modern) based on stream ciphers

Typical example: One-time pads Method for devising an unbreakable cipher

Algorithm:

- convert a plaintext of any length into a bit string, e.g. by using its ASCII representation
- choose a random bit string of equal length as the key
- compute the EXCLUSIVE OR of both strings, bit by bit, serving as resulting cipher text
- used only once

Main disadvantage:

• the overhead for key management (communicating the key in a secure way to the communication partners once again for each new plaintext) is, in general, beyond any acceptable size

---> not applied in practice

Symmetric Key Systems (1)

2b) Symmetric Key Systems (modern) based on block ciphers

Principle: Subdividing the plaintext in subsequent blocks of equal length (e.g. 64 or 128 bit) Idea: Concatenation of standard transposition (permutation) and substitution elements (boxes):

Example for a P(ermutation)-**box** (01234567 ---> 36071245)

The order of sequence has changed

Example for a S(ubstitution)**-box** (3bit plaintext to 3bit ciphertext)

By appropriate wiring of the P-box inside, any substitution can be accomplished.

In this example:

Numbers 0,1,2,3,4,5,6,7 each are replaced by the numbers 24506713

9

Symmetric Key Systems (2)

Example for a product cipher (concatenation)

Standard: DES

- plaintext is encrypted in blocks of 64 bits
- the algorithm has 19 steps
- the steps for decryption are done in the reverse order of those for encryption

Public Key Systems (1)

3. Public-Key Systems

Basic problem behind:

Is it possible that Alice and Bob can communicate by encrypted messages without having exchanged before a common secret key?

Principal solution:

Each party has a pair of keys, a public one (accessible to everybody) and a private one (only known by itself)

