Performance of rdt3.0

o rdt3.0 works, but performance could be desastrous

Example:
— 1 Gbps link, i.e. transmission rate of 10° bits per second
— 15 ms propagation delay,
— 1KB frame length, i.e. 8 000 bits per frame

- L (packet length in bits) _ _8kb/pkt 8 mi
Trar(\jserlncssuon R (transmission rate, bps) 10**9 b/sec - © microsec
— U qnger/channels Utilization — fraction of time sender busy sending
— RTT: Round-Trip Time
.008
U = L/R = — = 0.00027

Sender'_ RTT+ L / R B 30008

— 1KB pkt every 30 msec -> 267kb/sec throughput over 1 Gbps link
— network protocol limits use of physical resources!

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



rdt3.0: stop-and-wait operation

sender receiver
first packet bit transmitted, t = 0 —
last packet bit transmitted, t = L / R

— first packet bit arrives
— last packet bit arrives, send ACK

RTT

ACK arrives, send next|
packet,t=RTT+L/R

4

L/R _ 008 = 0.00027

U =
sender RTT + L / R 30.008

Implicit assumption so far:
Propagation delay of the medium is negligible or its bandwidth (transmission rate) is very low

If this assumption is false ---> exploitation of the bandwidth may be disastrous ---> requiring a sender to

wait for an ack for each single frame before sending the next frame must be relaxed

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Pipelined protocols

Pipelining: sender allows multiple, “in-transit”, yet-to-be-acknowledged frames, the sender
is allowed to transmit up to N frames before blocking, instead of just 1.

data pc:ckeT—p

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

Consequences:
Arange of sequence numbers must be increased
ADbuffering at sender

What exactly happens if a frame is lost or damaged in the middle of a long stream of transmitted frames?
Two basic approaches : go-Back-N, selective repeat

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —f--------- oo oo
last bit transmitted, t=L /R

first packet bit arrives
RTT \\\ last packet bit arrives, send ACK
> last bit of 2" packet arrives, send ACK
last bit of 3" packet arrives, send ACK

ACK arrives, send next
packet, t=RTT + L /R [ ==

'...'.._',':f::fjfjj::."-~---~~: Increase utilization
/ by a factor of 3!
y -_3*L/R _ .02

sender RTT + L / R 30.008

= 0.0008

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Go-Back-N
Sender:
o  k-bit seq # in frame header
o  “window” of up to N = 2k consecutive unack’ed frames allowed

send_base  nexfseqnum dlready Usable. hof
i i ack’ed yet sent
JIIEE L TTRELO0N0000 | septanproa ] ot
t__ window size —%
N

« timer for each in-transit frame
* timeout(n): retransmit frame and all higher seq # frames in window already sent

Receiver:
* ACK(n): ACKs all frames up to, including seq # n - “cumulative ACK”

 All frames arriving after an erroneous one are simply discarded, i.e the receiving entity refuses to accept
any frame except the next one to be delivered to the network layer

--->  eventually, the sender will time out and retransmit all unacknowledged frames in order
starting with the erroneous one

This strategy corresponds to a send window of size N and a receive window of size 1.
Main drawback: It can waste a lot of bandwidth if the error rate is high

D@M@ung “Kommunikation und Netze”, SS’09 E. Nett



Go-Back-N (example)

sender receiver
send kaO \
rcv pkto
send pkt1 sengACKO
> sendpki2 —__ (loss) Sard AckT
send pktd
(wait) rev pkt3, discard
¥ send ACK]
rcv ACKO
send pkt4
rcv pktd, discard
Srgr\_:dAgkfé \ Seﬁg ACK]
kib, di d
—pkt?2 timeout send ACKT -
send kaQ

send pkt3 \ rcv pkt2, deliver

send kT4 send ACK2

send ka5 rcv pkt3, deliver
\ send ACK3

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Selective repeat: send and receive windows

send_base  hexfsegnhum already Lsable. rot
iv i ack’ed yet sent
LT =Ry e
g - wEndow size —4
PN

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but (within window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIWII |ogeciss et e

wmdow size—4

1 N

rcv_base

(b) receiver view of sequence numbers

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Selective repeat in action (Example)

pktl =ent
01234567873 ‘__hﬂq__hﬂq_hhﬁﬁ_‘““ﬁ‘pktﬂ rovd, delivered. ACKD =ent
pktl =ent nf1 2 3 4|56 ¥ 8 9

01234567873 pktl rocvd, deliversed., ACK1l =ent

pkt2 =ent 01|12 3 4 5|6 7 89
— |01 2 3456 789 W
(loss)

pkt3 =ent. window full
0123456 7849

pkta rovd, uf fered, ACKI =ent
01|2 3458 7819

ACKD rovd, pktd =ent
oL 2 2 4156 7 89

pktd rocvd, uffered. ACK4 =ent
ACK]l rowd, pkth =ent 01|12 3 4 56 7 8 9

01{2 3 4 5fe 7 8 9

pkth rowd, uffered. ACKEL =ent
012 245/ 7 829

—— pkt2 TIMEOUT, pkt? resent
012 2 4 Ele 7 8 9

pkt2 rovd, pkt?. pkt3,pktd, pkth
delivered. ACKZ =sent

ACK3 rowd. nothing sent 012345k 7849
n1l|2 2 45|js 7 819

Vorle



Selective Repeat

« receiver individually acknowledges all correctly received frames, i.e. all correct frames arriving
after an erroneous one are accepted by the receiver as long as they fit into the receiver buffer

---> must buffer frames, as needed, for eventual in-order delivery to upper layer
e sender resends frames for which ACK not received
— sender must set a timer for each unACKed frame
e send window
— N consecutive seq #’s
— again limits seq #s of sent unACKed frames
* receive window also of size N

e Main drawback: It can require large amounts of data link layer buffer space

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Selective repeat: dilemma

Example:
e seq#'s:0,1,2,3
e window size=3

e receiver sees no difference
In two scenarios!

* incorrectly passes duplicate
data as new in (a)

Q: what relationship between
seq # size and window size?

Vorlesung “Kommunikation und Netze”,

sender window
(after receipt )

pkt0

receiver window
(after receipt)

01230172

012|301

012|301 2

SS’09

timeout

012301

sender window

(after receipt )

012|301

012301

0: 1 2138 0 i

Ojl1 2 3]0 1

0123 01

retransmit pktﬁkto

o1 2 3jJ01 2

CKO
CK1
ACK2

0123 0)1 2

012)301)2

—Jp receive packet
with seq number O

(a)

receiver window
(after receipt)

pktO
&
ktl CKO

Ol 2 3]0 1 2

0 12 3 0)1 2

12430 1)2

receive packet
with seq number O

()

E. Nett



Data Link Layer(18)

Pipelining implies multiple outstanding frames.
---> Each frame times out independent of all the other ones
---> It logically needs multiple timers

Simulation of multiple timers in software using a single hardware clock
The pending timeouts form a linked list

Example:

Real

time
10:00:00.0 '/ 10:00:00.5

(5|1 | —=8]2 ~ 6| 3 |X —| 8|2}

\\ Pointer to next timeout

Frame being timed
Ticks to go

(a) )

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Data Link Layer(19)

Internet protocols for the Data Link Layer (point-to-point):
Two protocols, SLIP and PPP, are widely used in the Internet as point-to-point data link protocols.

Typical application example: A home PC acting as an Internet host

User's home rtermet provider's office
'__ - - - T T TTT g I__ ——— T ———————— -y
i PC I Modems .f_:__,_\?_
1
| \ Client process ',_%_ |
. : p=—1

using TCRAP

Dial-up _%_ B !

felephons ne I !
JII'

7 = @1{3 !

TCPAP connection \ I

ey, | -3 =] =] =] |

using SLIE ar PP 7!_% o .}K:f
1

L_______“I?.‘?_f: !

Router Houting

EroCaEEs

-

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Data Link Layer(14)

The Serial Line Internet Protocol (SLIP):

» Designed in 1984 to connect SUN workstations to the Internet over a dial-up line using a modem.
o Itisverysimple:

— sends raw IP packets over the line with a special flag byte at the end for framing

— uses some form of character stuffing

» Drawbacks:
— does not do any error detection or correction
— supports only IP
— each side must know the other’s IP address a priori
— does not provide any form of authentication
— no approved Internet Standard

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Data Link Layer(15)

The Point-to-Point Protocol (PPP):

PPP basically provides three things:

1. A framing method that unambiguously delineates the end of one frame and the start of the
next one. The frame format also handles error detection.

2. A link control protocol for bringing lines up, testing them, negotiating options, and bringing
them down again gracefully when they are no longer needed. This protocol is called LCP (Link
Control Protocol).

3. A way to negotiate network-layer options in a way that is independent of the network layer
protocol to be used. The method chosen is to have a different NCP (Network Control Protocol)
for each network layer supported.

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



Data Link Layer(16)

A simplified phase diagram for bringing a line up and down:

Carrier Both sides

detected agree on options

\r*{ Establish

Failed

Authentication
successful

Failed

L—*{ Authenticate }—{

L J

| Metwork |

/\_{ Terminate }7—{ Cpen }h/K

Carrier
dropped

Done

NCP

configuration

The PPP full frame format for unnumbered mode of operation:

Bytas 1 1 1or2 Vanable 2ar 4 1
I'L
k]|
Flag Address | Control | o o | G il Flag
01111110 | 11111111 | 00000011 akacy P'J"":r““” Chacksum - 01199310
b1
Vorlesung “Kommunikation und Netze”, SS’09 E. Nett




PPP Data Frame

variable

1 1 1 lor2 length 2o0r4 1
o1111110f11111111}00000011| protocol| info | check [o1111110
flag control flag
address

Flag: delimiter (framing)

Address: does nothing (only one option)

Control: does nothing; in the future possible multiple control fields

Protocol: upper layer protocol to which frame delivered (eg, PPP-LCP, IP, IPCP, etc)
info: upper layer data being carried

check: cyclic redundancy check for error detection

Vorlesung “Kommunikation und Netze”, SS’09 E. Nett



