# **TCP/IP** reference model (Internet architecture)

## The Internet protocol stack and the respective protocol data units (PDUs):



The **physical layer** is not addressed further. It deals with transmitting raw bits over a physical transmission medium. The delivered service at the interface to the upper layer, however, must **not** guarantee that sending a bit 1 at one side will result in receiving bit 1 at the other side. To do its very best, it must undertake additional measures reflecting the specific properties of the medium.

#### **Examples for transmission media:**

wired: magnetic media, twisted pair, coaxial cable, fiber optics wireless: electromagnetic spectrum, radio- micro-, infrared waves Vorlesung "Kommunikation und Netze", SS'09 E. Nett

# Data Link Layer(1a)

## Some terminology:

- hosts and routers are **nodes**
- communication channels that connect adjacent nodes along communication path are **links** 
  - wired links
  - wireless links
  - LANs
- layer-2 packet is a **frame**, encapsulates datagram from the network layer

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link encapsulated in a frame



# **Data Link Layer(1b)**

## Virtual communication versus actual communication:



# **Data Link Layer(1c)**

- frames transferred by different link protocols over different links:
  - e.g., Ethernet on first link, PPP on the intermediate links, 802.11 (WLAN) on the last link
- each link protocol provides different services
  - e.g., may or may not provide rdt (reliable data transfer) over link

## transportation analogy

- trip from Princeton to Lausanne
  - limo: Princeton to JFK
  - plane: JFK to Geneva
  - train: Geneva to Lausanne
- tourist = frame
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

# Data Link Layer (1d)

### **Specific services to carry out:**

- framing
  - determining how the bits of the physical layer are grouped into frames
  - addresses used in frame headers to identify destination are different from IP addresses!
- dealing with transmission errors:
  - *error detection*:
    - receiver detects presence of errors:
    - signals sender for retransmission and drops frame
  - *error correction:* 
    - receiver identifies *and corrects* bit error(s) without resorting to retransmission
- *flow control:* 
  - pacing between adjacent sending and receiving nodes
- separate MAC sublayer
  - controlling channel access if the link is a shared medium

# Data Link Layer(2)

### **Grouping into frames**

#### Methods for framing:

- character count
- character stuffing
- bit stuffing
- exploiting redundancy in the physical layer (Manchester encoding)

#### **Example for character count:**



Vorlesung "Kommunikation und Netze",

## **Data Link Layer(3)**

#### **Example for character stuffing:**



**Example for bit stuffing:** 



# **Data Link Layer(4)**

## **Dealing with transmission errors**

Error Detecting Codes (EDC) and Error Correcting Codes (ECC)

#### **Definitions:**

Codeword:= source (payload (packet from layer above) word + header)) + (redundant) check (control) bits m:= length of the source word (number of bits)

r:= number of check bits

n:=m+r:=length of the codeword --->

A binary code is a subset of  $R_n^2$ . Its elements (words) also can be considered as code vectors (correct codewords)

### Hamming distance:

Let x and y be codewords in  $R_n^2$ . The function  $d(x,y):=\sum x_i \text{ eor } y_i$  with i=1,...,n is called Hamming distance of x and y. The Hamming distance of the entire code (set of all correct codewords) is defined as the minimal Hamming distance between any 2 codewords of this code.

## Data Link Layer(4a)

Illustration of the principle of Error-Correcting Codes (ECC's) and Error-Detecting Codes (EDC's):



Vorlesung "Kommunikation und Netze",

## **Data Link Layer(5)**

#### Lower limits on the number of check bits needed to correct single errors depending on the word size:

Each of the 2<sup>m</sup> legal codewords has n illegal codewords at a distance 1 dedicated to it --->

 $(n+1) 2^m \le 2^n$ . Using  $n = m+r \dots >$ 

 $(m+r+1) \le 2^r$ 

Some numbers for r depending on m:

| Word size | Check bits | Total size | Percent overhead |
|-----------|------------|------------|------------------|
| 8         | 4          | 12         | 50               |
| 16        | 5          | 21         | 31               |
| 32        | 6          | 38         | 19               |
| 64        | 7          | 71         | 11               |
| 128       | 8          | 136        | 6                |
| 256       | 9          | 265        | 4                |
| 512       | 10         | 522        | 2                |

Vorlesung "Kommunikation und Netze",

E. Nett