Secrecy (1)

Symmetric Key System:Keys of Alice and Bob are identical and secret*Public Key System:*Both, Alice and Bob have a pair of keys, one is public, the other is only known by its holder.

1. Symmetric Key Systems (old)

Traditional encryption methods have been divided historically into two categories:

- substitution ciphers (preserve the order of the plaintext symbols but disguise them)
- transposition ciphers (reorders the plaintext symbols but do not disguise them)

Ancient and simple substitution cipher: Caesar's cipher

The ciphertext alphabet results from a shift of k letters in the plaintext alphabet (key:=k).

Generalization of Caesar's chiffre: monoalphabetic substitution

Each letter or group of letters is replaced by another letter or group of letters to disguise it

Example for a monoalphabetic substitution

plaintext:	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	V	W	X	У	Z
ciphertext:	Q	W	E	R	T	Y	U	Ι	Ο	P	A	S	D	F	G	Η	J	K	L	Ζ	Х	C	V	В	N	Μ

Secrecy (2)

Transposition ciphers

Instead of disguising letters they are reordered

Example for a columnar transposition

M	E	G	<u>A</u>	В	U	C	K	
7	4	5	1	2	8	3	6	
р	Ι	е	а	s	е	t	r	Plaintext
а	n	s	f	е	r	0	n	pleasetransferonemilliondollarsto
е	m	i	Ι	Ι	i	0	n	myswissbankaccountsixtwotwo
d	0	Ι	I	а	r	s	t	Ciphertext
0	m	у	s	w	i	s	s	•
b	а	n	k	а	с	с	0	AFLLSKSOSELAWAIATOOSSCTCLNMOMANT ESILYNTWRNNTSOWDPAEDOBUOERIRICXB
u	n	t	s	i	х	t	w	
о	t	w	0	а	b	с	d	

Symmetric Key Systems (1)

2. Symmetric Key Systems (modern)

Idea: Concatenation of standard transposition (permutation) and substitution elements (boxes):

Example for a P(ermutation)-**box** (01234567 ---> 36071245)

The order of sequence has changed

Example for a S(ubstitution)**-box** (3bit plaintext to 3bit ciphertext)

By appropriate wiring of the P-box inside, any substitution can be accomplished.

In this example:

Numbers 0,1,2,3,4,5,6,7 each are replaced by the numbers 24506713

Symmetric Key Systems (2)

Example for a product cipher (concatenation)

Standard: DES

- plaintext is encrypted in blocks of 64 bits
- the algorithm has 19 steps
- the steps for decryption are done in the reverse order of those for encryption

Public Key Systems (1)

3. Public-Key Systems

Basic problem behind:

Is it possible that Alice and Bob can communicate by encrypted messages without having exchanged before a common secret key?

Principal solution:

Each party has a pair of keys, a public one (accessible to everybody) and a private one (only known by itself)

Public Key Systems (2)

The RSA algorithm

Two components:

- Selecting the keys
- Applying the encryption and decryption algorithm

Selecting the keys (by Bob):

- 1. Choose two large primes, p and q
- 2. Compute $n = p \ge q$ and $z = (p-1) \ge (q-1)$.
- 3. Choose a number relatively prime to z, smaller than n and call it e (e is used for encryption).
- 4. Find d such that $e \ge d = 1 \mod z$ (d is used for decryption).
- 5. The public key is (n,e), the private key is (n,d).

Encryption (by Alice) of a bit pattern (number) *m* such that m < n by means of Bob's public key (*n*,*e*). The resulting cipher *c* is:

 $c = m^e \mod n$

Decryption (by Bob) of *c* by means of his private key (n,d) in order to get the plaintext *m*: $m = c^d mod n$

Public Key Systems (3)

Example of the RSA algorithm

p=5, q=7 --> n = 35, z=24. Further, Bob selects e=5, d=29 (5*29 - 1 can be divided by 24)

----> public key of Bob: (35,5), private key of Bob: (35, 29)

Alice wants to send the message "LOVE" to Bob by encrypting each letter separately and interpreting each letter as the corresponding number (a maps to 1,, z maps to 26)

Tabelle 7.1 Die RSA-Verschlüsselung von Alice, e = 5, n = 35Chiffretext Klartextbuchstabe m: numerische Darstellung me $c = m^e \mod n$ 248832 L 12 17 0 15 759375 15 V 22 5153632 22 3125 Ε 5 10

Tabelle 7.2 Die RSA-Verschlüsselung von Bob, e = 29, n = 35 Chiffre-C_d Chiff-Klartexttext c retext buch $m = c^d$ stabe mod n 17 481968572106750915091411825223072000 12 1 15 12783403948858939111232757568359400 15 0 22 8.51643319086537701195619449972111e+38 22 V 5 10 е

Authentication

Authentication Protocols

- technique by which a process verifies that its *actual* communication partner is who it is supposed to be
- normally done before the partners start to exchange data messages, e.g. e-mails

Version with symmetric keys

Version with public keys

