Secrecy (1)

Symmetric Key System:

Keys of Alice and Bob are identical and secret
Public Key System:
Both, Alice and Bob have a pair of keys, one is public, the other is only known by its holder.

1. Symmetric Key Systems (old)

Traditional encryption methods have been divided historically into two categories:

- substitution ciphers (preserve the order of the plaintext symbols but disguise them)
- transposition ciphers (reorders the plaintext symbols but do not disguise them)

Ancient and simple substitution cipher: Caesar's cipher
The ciphertext alphabet results from a shift of k letters in the plaintext alphabet (key:=k).

Generalization of Caesar's chiffre: monoalphabetic substitution
Each letter or group of letters is replaced by another letter or group of letters to disguise it

Example for a monoalphabetic substitution

Secrecy (2)

Transposition ciphers

Instead of disguising letters they are reordered

Example for a columnar transposition

Plaintext pleasetransferonemilliondollarsto myswissbankaccountsixtwotwo
Ciphertext

AFLLSKSOSELAWAIATOOSSCTCLNMOMANT

 ESILYNTWRNNTSOWDPAEDOBUOERIRICXB
Symmetric Key Systems (1)

2. Symmetric Key Systems (modern)

Idea: Concatenation of standard transposition (permutation) and substitution elements (boxes):

Example for a P(ermutation)-box (01234567 ---> 36071245)

The order of sequence has changed

Example for a S(ubstitution)-box (3bit plaintext to 3bit ciphertext)
By appropriate wiring of the P-box inside, any substitution can be accomplished.
In this example:
Numbers $0,1,2,3,4,5,6,7$ each are replaced by the numbers 24506713

Symmetric Key Systems (2)

Example for a product cipher (concatenation)

Standard: DES

- plaintext is encrypted in blocks of 64 bits
- the algorithm has 19 steps
- the steps for decryption are done in the reverse order of those for encryption

Public Key Systems (1)

3. Public-Key Systems

Basic problem behind:
Is it possible that Alice and Bob can communicate by encrypted messages without having exchanged before a common secret key?

Principal solution:
Each party has a pair of keys, a public one (accessible to everybody) and a private one (only known by itself)

The general model

Public Key Systems (2)

The RSA algorithm

Two components:

- Selecting the keys
- Applying the encryption and decryption algorithm

Selecting the keys (by Bob):

1. Choose two large primes, p and q
2. Compute $n=p \times q$ and $z=(p-1) \times(q-1)$.
3. Choose a number relatively prime to z, smaller than n and call it e (e is used for encryption).
4. Find d such that $e \times d=1 \bmod z$ (d is used for decryption).

5 . The public key is (n, e), the private key is (n, d).

Encryption (by Alice) of a bit pattern (number) m such that $m<n$ by means of Bob’s public key (n, e).
The resulting cipher c is:
$c=m^{e} \bmod n$

Decryption (by Bob) of c by means of his private key (n, d) in order to get the plaintext m :

$$
m=c^{d} \bmod n
$$

Public Key Systems (3)

Example of the RSA algorithm

$p=5, q=7$---> $n=35, z=24$. Further, Bob selects $e=5, d=29$ (5*29-1 can be divided by 24)
----> public key of Bob: $(35,5)$, private key of Bob: $(35,29)$
Alice wants to send the message "LOVE" to Bob by encrypting each letter separately and interpreting each letter as the corresponding number (a maps to $1, \ldots .$. , z maps to 26)

Klartextbuchstabe	m : numerische Darstellung	$m^{\text {e }}$	Chiffretext $c=m^{e} \bmod n$
L	12	248832	17
0	15	759375	15
V	22	5153632	22
E	5	3125	10

Chiffretext c	c^{d}	Chiffretext $m=c^{d}$ $\bmod n$	Kartext buchstabe
17	481968572106750915091411825223072000	12	1
15	12783403948858939111232757568359400	15	-
22	$8.51643319086537701195619449972111 e+38$	22	v
10	100000000000000000000000000000	5	e

Authentication

Authentication Protocols

- technique by which a process verifies that its actual communication partner is who it is supposed to be
- normally done before the partners start to exchange data messages, e.g. e-mails

Version with symmetric keys

Version with public keys

