
Addressing Modes 1

Addressing Modes

Addressing modes are concerned with

how the CPU accesses the operands used

by its instructions

Addressing Modes 2

Register Direct Addressing

Register direct addressing is the simplest addressing

mode in which the source or destination of an operand is

a data register or an address register. The contents of the

specified source register provide the source operand.

Similarly, if a register is a destination operand, it is

loaded with the value specified by the instruction. The

following examples all use register direct addressing for

source and destination operands.

MOVE.B D0,D3 Copy the source operand in register D0 to register D3
SUB.L A0,D3 Subtract the source operand in register A0 from register D3
CMP.W D2,D0 Compare the source operand in register D2 with register D0

ADD D3,D4 Add the source operand in register D3 to register D4

Addressing Modes 3

Register Direct Addressing

MOVE.B D0,D1

D1

D025

The MOVE.B D0,D1 instruction uses

data registers for both source and destination

operands

The source operand

is data register D0

The instruction

indicates the data

register

Addressing Modes 4

MOVE.B D0,D1

D1

D025

The destination operand

is data register D1

Addressing Modes 5

MOVE.B D0,D1

D1

D025

25

The effect of this instruction is

to copy the contents of data register

D0 in to data register D1

Addressing Modes 6

Register Direct Addressing

Register direct addressing uses short instructions

because it takes only three bits to specify one of eight

data registers.

Register direct addressing is fast because the external

memory does not have to be accessed.

Programmers use register direct addressing to hold

variables that are frequently accessed (i.e., scratchpad

storage).

Addressing Modes 7

Immediate Addressing

In immediate addressing the actual operand forms

part of the instruction. An immediate operand is also

called a literal operand. Immediate addressing can be

used only to specify a source operand.

Immediate addressing is indicated by a # symbol in

front of the source operand.

For example, MOVE.B #24,D0 uses the immediate

source operand 24.

Addressing Modes 8

MOVE.B #4,D0

D0

The instruction MOVE.B #4,D0
uses a literal source operand and

a register direct destination operand

Addressing Modes 9

MOVE.B #4,D0

D0

The literal source operand,

4, is part of the instruction

Addressing Modes 10

MOVE.B #4,D0

D0

The destination operand is

a data register

Addressing Modes 11

MOVE.B #4,D0

D04

The effect of this instruction is to

copy the literal value 4 to data

register D0

Addressing Modes 12

Direct Addressing

In direct or absolute addressing, the instruction

provides the address of the operand in memory.

Direct addressing requires two memory accesses.

The first is to access the instruction and the

second is to access the actual operand.

For example, CLR.B 1234 clears the contents of

memory location 1234.

Addressing Modes 13

MOVE.B 20,D0

D0
20 42

Memory

This instruction has a direct

source operand

The source operand

is in memory

The destination operand

uses data register direct

addressing

Addressing Modes 14

MOVE.B 20,D0

D0
20 42

Memory The address of the operand forms

part of the instruction

Once the CPU has read the operand

address from the instruction, the CPU

accesses the actual operand

This is the actual operand

Addressing Modes 15

MOVE.B 20,D0

D0
20 42

42

Memory

The effect of MOVE.B 20,D0
is to read the contents of memory

location 20 and copy them to D0

Addressing Modes 16

Summary of Fundamental

Addressing Modes

Consider the high-level language example: Z = Y + 4

The following fragment of code implements this construct

ORG $400 Start of code
MOVE.B Y,D0
ADD #4,D0
MOVE.B D0,Z

ORG $600 Start of data area
Y DC.B 27 Store the constant 27 in memory
Z DS.B 1 Reserve a byte for Z

Addressing Modes 17

The Assembled Program

1 00000400 ORG $400
2 00000400 103900000600 MOVE.B Y,D0
3 00000406 06000018 ADD.B #24,D0
4 0000040A 13C000000601 MOVE.B D0,Z
5 00000410 4E722700 STOP #$2700
6 *
7 00000600 ORG $600
8 00000600 1B Y: DC.B 27
9 00000601 00000001 Z: DS.B 1
10 00000400 END $400

Addressing Modes 18

Memory map of the program

000400 103900000600 MOVE. B Y, D0

000406 06000018 ADD. B #24, D0

00040A 13C000000601 MOVE. B D0, Z

000410 4E722700 STOP #$2700

000600 1B Y 27

000601 1 Z

Memory
(numeric form)

Memory
(mnemonic form)

Y is a variable

accessed via the

direct address

000600

This is a literal

operand stored as

part of the instruction

Z is a variable

accessed via the

direct address

000601

Addressing Modes 19

Summary
Register direct addressing is used for variables that can

be held in registers

Literal (immediate) addressing is used for constants

that do not change

Direct (absolute) addressing is used for variables that

reside in memory

The only difference between register direct addressing

and direct addressing is that the former uses registers

to store operands and the latter uses memory

Addressing Modes 20

Address Register Indirect Addressing

In address register indirect addressing, the instruction

specifies one of the 68000’s address registers; for

example, MOVE.B (A0),D0.

The specified address register contains the address of the

operand.

The processor then accesses the operand pointed at by

the address register.

Addressing Modes 21

MOVE.B (A0),D0

D01000

1000

A0

42

Memory This instruction means

load D0 with the contents

of the location pointed at

by address register A0

The instruction specifies the

source operand as (A0).

Addressing Modes 22

The address register in the instruction

specifies an address register that holds

the address of the operand

Addressing Modes 23

MOVE.B (A0),D0

D01000 57

1000

A0

Memory

The address register is used to access

the operand in memory

Addressing Modes 24

MOVE.B (A0),D0

D01000 57

1000

A0

Memory

Finally, the contents of the address register

pointed at by A0 are copied to the data register

Addressing Modes 25

Auto-incrementing

If the addressing mode is specified as (A0)+,

the contents of the address register are

incremented after they have been used.

Addressing Modes 26

ADD.B (A0)+,D0

D01000 57

1000

A0

Memory

The address register contains 1000

and points at location 1000

Addressing Modes 27

ADD.B (A0)+,D0

D01000

1001

57

1000

A0

Memory

Address A0 register is used to access memory

location 1000 and the contents of this location

(i.e., 57) are added to D0

Addressing Modes 28

ADD.B (A0)+,D0

D01000

1001 43

1001

A0

Memory

After the instruction has been executed,

the contents of A0 are incremented to

point at the next location

Addressing Modes 29

Use of Address Register Indirect Addressing

MOVE.B #5,D0 Five numbers to add
LEA Table,A0 A0 points at the numbers
CLR.B D1 Clear the sum

Loop ADD.B (A0)+,D1 REPEAT Add number to total
SUB.B #1,D0
BNE Loop UNTIL all numbers added
STOP #$2700

*
Table DC.B 1,4,2,6,5 Some dummy data

We are now going to trace through part of this program,

instruction by instruction.

The following fragment of code uses address register

indirect addressing with post-incrementing to add together

five numbers stored in consecutive memory locations.

Addressing Modes 30

The first instruction

loads D0 with the literal

value 5

D0 has been

loaded with 5

This instruction

loads A0 with the

value $0416

A0 contains $0416

>DF
PC=000400 SR=2000 SS=00A00000 US=00000000 X=0
A0=00000000 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000000 D1=00000000 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->MOVE.B #$05,D0

>TR
PC=000404 SR=2000 SS=00A00000 US=00000000 X=0
A0=00000000 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000005 D1=00000000 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->LEA.L $0416,A0

Trace>
PC=00040A SR=2000 SS=00A00000 US=00000000 X=0
A0=00000416 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000005 D1=00000000 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->CLR.B D1

Addressing Modes 31

This instruction adds the

contents of the location

pointed at by A0 to D1

Because the operand was

(A0)+, the contents of A0

are incremented

ADD.B (A0)+,D1
adds the source operand

to D1

Trace>
PC=00040C SR=2004 SS=00A00000 US=00000000 X=0
A0=00000416 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=1
D0=00000005 D1=00000000 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->ADD.B (A0)+,D1

Trace>
PC=00040E SR=2000 SS=00A00000 US=00000000 X=0
A0=00000417 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000005 D1=00000001 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->SUBQ.B #$01,D0

Trace>
PC=000410 SR=2000 SS=00A00000 US=00000000 X=0
A0=00000417 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000004 D1=00000001 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->BNE.S $040C

Addressing Modes 32

On the next cycle

the instruction

ADD.B (A0)+,D1
uses A0 as a source

operand and then

increments the contents

of A0

Trace>
PC=00040C SR=2000 SS=00A00000 US=00000000 X=0
A0=00000417 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000004 D1=00000001 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->ADD.B (A0)+,D1

Trace>
PC=00040E SR=2000 SS=00A00000 US=00000000 X=0
A0=00000418 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000004 D1=00000005 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->SUBQ.B #$01,D0

Trace>

PC=000410 SR=2000 SS=00A00000 US=00000000 X=0
A0=00000418 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000003 D1=00000005 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->BNE.S $040C

Addressing Modes 33

Problem

Identify the source addressing mode used by each of the

following instructions.

Addressregister indirect addressing. The address

of the source operand in in A5.

Literal addressing. The source operand isthe

literal value 12.

Memory direct addressing. The source operand isthe

contentsof the memory location whose

symbolic name is“TIME”.

Data register direct. The source operand isthe

contentsto D6.
Addressregister indirect with post-incrementing.

The addressof the source operand is in A6. The

contentsof A6 are incremented after the instruction.

ADD.B (A5),(A4)

MOVE.B #12,D2

ADD.W TIME,D4

MOVE.B D6,D4

MOVE.B (A6)+,TEST

Addressing Modes 34

Problem

If you were translating the following fragment of pseudocode

into assembly language, what addressing modes are you most

likely to use?

SUM isa temporary variable. You can put it in a

register and use register direct addressing

J is initialized to the literal value 5.

X(J) is an array element that

would be accessed via address

register indirect addressing.

J isa temporary variable that would normally be

located in a register.

SUM = 0

FOR J = 5 TO 19

SUM = SUM + X(J)*Y(J)

END FOR

