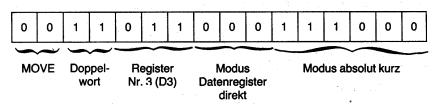
Adressierungstechniken 68000

Beispiel

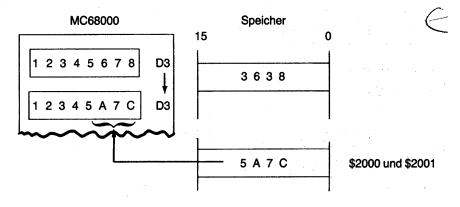
Direkte Adressierung

Bei dieser Adressierungsart ist der Operand in einem angegebenen Register als effektive Adresse (EA) enthalten. Dieses Register ist eines der acht 32-Bit Register D_n


Beispiel, bei dem das Datenregister der Zieloperand der Übertragung ist:

MOVE

\$2000, D3


; übertrage das an Adresse \$2000 stehende Wort

; ins Datenregister D3

Hexadezimalcode:

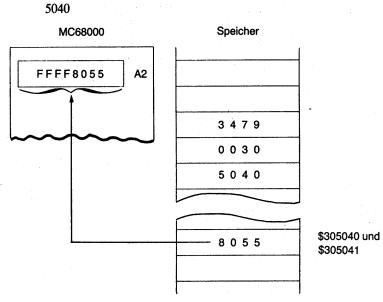
3638

Beispiel bei dem das Adressregister der Zieloperand der Übertragung ist:

Es gibt ein 32 Bit langes Adressregister An das Zieloperand ist

MOVE \$305040, A₂

Befehlscode: 0011010001111 001


Hierbei gilt wie im obigen Beispiel von links nach rechts gelesen:

- ➤ 2 Bit: MOVE
- ➤ 2 Bit: Wortlänge .L
- ➤ 3 Bit: Register 2 (also A2)
- ➤ 3 Bit: Modus: Adressregister direkt
- ➤ 6 Bit: Moduls: absolut lang (Adressierung)

und gelangen damit zu folgender Darstellung:

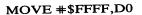
Hexadezimalcode:

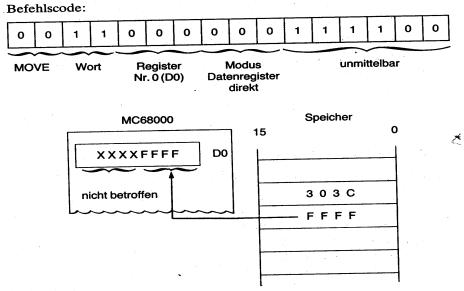
3479 0030

Anmerkung:

Wenn eins der sieben 32-Bit-Adressregister das Ziel ist,

würde das oben bedeuten:


MOVE \$305040, A2


Beispiel: <u>Unmittelbare (imidiate) Adressierung</u>

Kodieren Sie den Transfer des Wertes \$FFFF ins Register D0

> Lösg. MOVE #\$FFFF, D0

Somit sehen wir:

Beispiel-Aufgabe:

Wie würde das Ergebnis aussehen, wenn statt des Registers D0 das Register A0 verwendet wird?

Lösung:

MOVE #\$FFFF, A0

Würde wegen der vorzeichenbehafteten Erweiterung der führenden Zeichen

Im Register A0 nun FFFFFFF ergeben!

Beispiel Indirekte Adressierung

Kodieren Sie den Transfer des Inhaltes einer beliebigen Speicheradresse in ein beliebiges Datenregister.

Lösung:


MOVE (A0), D0

Eine Adresse steht in A0; der Inhalt dieser Speichezelle soll nun nach D0 gebracht werden.

Beispiel <u>Indirekte Adressierung mit Post-increment</u>

Das Adressregister wird indirekt genutzt zB. bei Stapelverarbeitung / Stack

Adressregister: sei A_n+ Step 3 Speicher Adr.

Operand

Inkrementwerte wären: N: 1,2,4 weil

1 für Byte

2 für Wort

3 für Doppelwort

Beispiel-Aufgabe:

Leiten Sie daraus Überlegungen ab, wie ein Pre-Decrement aussehen könnte?

Mit: NOT.W -(A0) sowie mit MOVE -(A1), \$3000

Hinweis: Diese Technik wird zukünftig für den Umgang mit Unterprogrammen verwendet / STACK Technik

Beispiel-Aufgabe:

Register D1=\$17832428

CCR = \$17(X=1, N=0, Z=V=C=1)

Welchen Inhalt hat D1 nach der Operation

MOVE.B #\$80, D1

Lösung. D1=\$178324**80**

Beispiel-Aufgabe:

Analysieren Sie das Programm und testen Sie im 68K Simulator

ORG \$1000

MOVE.W D1, \$3115

END

Lösung. Das Programm zeigt einen Fehler, denn es überträgt ein Wort an eine ungerade

Adresse.

Beispiel-Aufgabe:

Analysieren Sie: ORG \$1000

MOVE.B A2, \$2000

END

Lösung: Bei dieser Operation, die ein Adressregister verwendet ist .B nicht erlaubt !!

Beispiel-Aufgabe

Vor Ausführung: D0=\$00218013

D1=\$00038065 CCR=\$00

Somit: 8013

8065

10078 hexa! folglich: N=0, Z=0, C=1, X=V=1

Nach Ausführung: D0=\$00218013

D1=\$00030078

CCR=\$13

Der Befehl ADD setzt den Bedingungscode gemäß dem Resultat der Operation.