
Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (1)

1. Temporal Specifications
RT systems are in essence responsive (reactive), i.e. responding to events from the environment (user).

Response Time
Interval between the occurrence of an input event and the first related output event
Timed Action
Execution of an action A such that its termination event happens within an interval TA from a reference real
time instant tA.

Timing Analysis of an action: (a) Computation (b) Communication

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (2)

Jitter
variance in the duration of an action execution or imprecision in the positioning of its termination event.

Example

Mainly two approaches of triggering timed actions:
• event-triggered: system reacts upon the occurrence of an input event
• time-triggered: system reacts upon the command of a clock

Example

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (3)

System predictability depends on the predictability of the inputs received from the environment which again
depends on the class of application.
Trade-off:
Guaranteeing system predictability is simpler given a model assuming for regular (periodic) arrival patterns
but: potential lack of coverage
Assuming a model accepting irregular (aperiodic) arrival patterns are closer to reality but: designing and
proving that such systems are predictable is much more difficult

W.r.t the arrival of tasks, 3 types can be distinguished:
Periodic are such where tasks are released regularly at fixed rates (periods).
Aperiodic are such where tasks are released irregularly at some unknown and possibly unbounded rate.
Sporadic tasks are such where tasks are released irregularly with some bounded rate. This rate is
characterized by a minimum interarrival period.

Aperiodic Distribution

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (4)

Periodic Distribution

Sporadic Distribution

burst period TB : lower bound for the interval between the start of two consecutive bursts
burst length NB : upper bound of number of events occurring in one burst
inter-arrival time TI : lower bound for the interval between the occurrence of two consecutive events

Utilization Factor
measure of percentage a resource is used over a given time interval

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (5)

2. Entities and Representatives
RT entity: element of the environment the state of which can be read or written, but not both
Representative: element of the (controlling) computer system which observes or acts on a RT entity´s state

The state of a RT entity is not accurately reflected in its representative at all times during system evolution!
---> A representative emulates its RT entity with an error in the value of state, or in the time of state

changes, or both.

Examples for RT Entity - Representative Relationship

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (6)

3. Time-Value Duality
Time-Value entity: RT entity E the value V of which depends on time, i.e. V = E(t)
For operations using time-value entities to be correct, two problems must be solved:
1. ensuring the correct observation of

- the instantaneous value of the RT entity and
- its positioning in the timeline, i.e. the corresponding time of the value

2. ensuring the correct use of the observation, i.e. using the observed value while it is still valid

ad 1)
Given a known V0, observation (r(Ei)(ti), Ti) is consistent in the value domain, if and only if vi <= V0

Given a known Ζi, observation (r(Ei)(ti), Ti) is consistent in the time domain, if and only if ζi <= Ζ0

A set of observations is mutually consistent, if they are consistent and the timestamps of all observations fall
within a given interval Ζm (also called relative validity interval in the context of databases)

ad 2)
Given a known Va, observation (r(Ei)(ti), Ti) is temporarily consistent at ta >= Ti,
if and only if |Ei(ta)-Ei(Ti)| <= Va (also called absolute validity interval in the context of databases)

The first problem addresses the consistency property w.r.t. the observation instant, the second one deals
with the evolution of consistency over time, a specific characteristics of time-value entities.

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (7)

1. Time and Clocks

Time is a very useful artifact to represent the

- ordering

- sequencing

- synchronizing

of events in any system.

The passage of time is marked by an abstract monotonically increasing continuous function, called real time

Along history, time has been represented (measured) in different ways, mainly dependent on how the unit of
time,called second, was measured.
timeline: graphical representation of time units as sequence of points over a straight line (digitized time)

The use of time in computer systems addresses two aspects:
- observing and recording the place of events in a timeline (ordering, sequencing)
- enforcing the future positioning of events in the timeline (synchronizing)

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time Paradigms (8)

UT (AT, 1833) Universal Time (UT) Mittlere Sonnenzeit, gemessen am Greenwich 0-Meridian (GMT).
Basiert auf der mittleren Länge eines Sonnentags, d.h. auf der Erdrotation

Zeitzonen (1884): Gebiete für die dieselbe Zeit festgelegt ist. 1884 wird die Welt in 24 Zeitzonen aufgeteilt. Die
Zeitzonen unterscheiden sich von UT (GMT) ganzzahlig um jeweils 1 Stunde
.

ET (AT, 1955) Ephimeridenzeit (ET), basiert auf der Umlaufzeit der Erde um die Sonne. Harold Spencer Jones
stellte 1939 fest, daß die Rotation der Erde variiert, die Umlaufzeit um die Sonne nicht. 1 Sekunde
der ET wird festgelegt als der 1/31.566.925,9747 Teil des tropische Jahres, das am Mittag des 1.
Januars 1900 begann. (Tropisches Jahr: Periode zwischen zwei aufeinanderfolgenden Umläufen
der Sonne durch den Himmelsäquator in derselben Richtung.)

UT2 (AT, 1960) Zeit, basierend auf und gemittelt über den lokalen Beobachtungen verschiedener über die Erde
verteilter Observatorien und anschließend nochmals auf empirischer Basis korrigiert

TAI (PT, 1961) Temps Atomique International (TAI) basiert auf mehreren koordinierten Cäsium-Uhren. Fortlau-
fende Zeitzählung, beginnend mit dem 1.Januar 1958 0 Uhr UT2-Zeit (daher konsistent mit UT2).
1 Sekunde der TAI ist 9 192 631 770 mal die Periode der Strahlung des Atoms Cäsium 133.
Driftrate ρ ≈ 10 -14, d.h. Abweichung ca. 1 Sek / 300000 Jahre

UTC (PT, 1972) Universal Time Coordinated (UTC) basiert auf TAI, wird aber ständig an UT2
angepaßt. Immer wenn UTC und UT2 mehr als 800 ms auseinander gedrifted sind,
wird eine “Schaltsekunde” eingefügt. UTC beginnt am 1. Januar 1972. Seit dieser Zeit
sind bis 1992 15 Schaltsekunden eingefügt worden. UTC ist damit eine an AT angepaßte
physikalische Zeit.

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (9)

local physical clock:
implements in hardware the mapping of real time t into a clock time pc(t), which is a monotonically
increasing discrete function. They are based typically on oscillators such as quartz. The timeline now
becomes a sequence of discrete ticks.
They are mainly characterized by the parameters (also representing its imperfections)
- granularity g: time difference between two consecutive ticks t(i) and t(i+1): g:= pc(t(i+1)) - pc(t(i))
- drift rate ρ: �������� constant denoting the drift of a physical clock from real time

ρ ≈ 10 -5, i.e. several microseconds per second, e.g. ca. 36 ms after 1 hour, almost 1 s after 1 day
- clock rate: : 1- ρ ≤ (pc(t(i+1) - pc(t(i))) / ∆t ≤ 1+ ρ for ∆t = t(i+1) - t(i)
local clocks can be used to
- represent a timer to set timeouts
- timestamp local events
- measure local durations
They cannot be used for timing analysis regarding global events in a distributed systems because of ρ
 −−> need to synchronize all local clocks by means of a clock synchronization algorithm
global clocks
A global clock in a distributed system is built by synchronizing in periodic rounds all local clocks as close as
possible to the same initial value.
virtual clock: the time vc(t) delivered by a synchronized physical clock
The set of virtual clocks under the control of the synch. algorithm. constitutes the global clock of the system

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time Paradigms (10)

Properties of a Global Clock:

precision πv denotes the maximum deviation between two corresponding ticks of any two virtual clocks, as
seen by an outside observer, measured by the external reference clock representing the real time.

πv := max{for all i,k,l : |vck(t(i)) - vcl(t(i))|}
granularity gv denotes the time interval between two consecutive global ticks

accuracy αv������� ��� ������� ��������� between a tick of any of the virtual clocks
and the

corresponding tick of the external reference clock Pext.
αv := max{for all i,k : |vck(t(i)) - Pext(t(i))|}

convergence δv denotes the maximum deviation between any two ticks of the virtual clocks immediately
after the termination of a synchronization round (minimal deviation:= maximal precision).

δv := max{for all k,l : |vck(t(0)) - vcl(t(0))|}
convergence δ is a measure for the quality of the clock synch. algorithm (internal synchronization)
accuracy α is a measure for the external synchronization, e.g. by means of GPS

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time Paradigms (11)

The definitions above imply the following relations: π≥δπ≤ �α , �> π
(precision cannot be better than convergence and at least twice the accuracy, it is senseless to select a
granularity finer than the precision)

any globally visible event e is timestamped t(e) by different nodes of the system with at most one tick
difference
let d := |t(e1) - t(e2)| (No. of ticks); if d < 2 --> no physical order of the events e1 and e2 can be deduced
granularity (which itself depends on precision) determines the resolution of the global time grid

Required components to define a global time basis:
- an external reference time, e.g. UTC-based
- local physical clocks
- a synchronization algorithm

computer node

computer node
time
server���

GPS (Global Positioning System):
- network of 21 satellites covering earth surface
- equipped with cesium atomic clocks with high stability (ρg ca.10-14 , i.e. 1sec drift in 3 000 000 years)
- GPS-receiver clocks mostly provide UTC with an accuracy of αg ≤ 100ns
 ��� �������� ������� ���� �� ������ ���������� (being under the light cone of

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (12)

clock synchronization:
The process of maintaining the required properties of precision(internal synch.) and accuracy (external
+ internal synch (Π = 2 α) of a set of clocks
Assumption: the drift rate of each individual clock is bounded
---> this allows to predict the maximum deviation after a given time interval.

7. Clock Synchronization

Behavior of a Clock over Time:(a) Accuracy Drift; (b) Precision Drift

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (13)

Basic result:
Convergence, i.e. the precision achieved immediately after the synchronization, cannot be made arbitrarily
small due to a remote clock reading error caused by the variance in message delays.

resynchronization interval TS: time interval between successive synchronizations

Clock Synchronization

amortization: rate correction factor applied when clock is read (instead of instantaneously changing the
clock time)

state synchronization: adjusting clocks by changing their value (done by software, PC (hardware) clock
remains unchanged)

rate synchronization: adjusting the rate at which the hardware clock ticks

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (14)

Internal Synchronization
Respective algorithms are normally cooperative, .i.e. each clock applies a convergence function to the
values of each process.

Averaging Synchronization

convergence functions could be, e.g.:
• average
• midpoint

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (15)

Non-Averaging Synchronization
Instead of disseminating individual clock values and subsequently applying convergence functions agreed
on, here, processes disseminate a control message to signal end of a synchronization interval.

Example

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (16)

External Synchronization
Respective algorithms are not cooperative, but master-slave.

Simplest method: Multicasting of time by the master (used to synchronize GPS receiver units)

Round-Trip External Synchronization

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (17)

4. Scheduling
Scheduling is concerned with assigning needed resources in order to execute tasks such that the system
meets the timing requirements. Scheduling is the backbone of a RT system and, therefore, is the most
widely researched topic within RT systems.

Policies of Non-RT (general purpose) systems aim at
• fairness
• high performance (throughput)
• high resource utilization

RT systems only aim at
• predictability, if necessary, in detriment of the other aims.

Important timing parameters of a task

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (18)

W.r.t. the flexibility of tasks regarding their timing constraints and functionality, they can be classified as:

Hard tasks

All timing constraints must be met and optimal functionality is delivered.

Critical tasks

Their activation can be triggered later than the given release time.

Redundant tasks

All timing constraints are met and the delivered functionality(accuracy) is not
optimal (gracefully degraded) but still acceptable (correct in the sense of in
compliance with the overall specification).

Soft (best effort) tasks

Missing the deadlines of soft tasks can be tolerated.

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (19)

Classification of scheduling algorithms:

Preemptive
The task being executed can be interrupted at any time in order to assign the
processor to another task according to the used algorithm.

Non-preemptive
A task, once started, is executed by the processor until completion.

Static
Scheduling decisions are based on static (fixed) task parameters.

Dynamic
Scheduling decisions are based on dynamic (possibly changing at system
run-time) task parameters

calendar-based
Tasks are executed according to a resulting calendar (time schedule).

Priority-based
Tasks are executing according to assigned (fixed or dynamically changing) priorities.

Independent
Release time of tasks does not depend on the termination time of other tasks

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (20)

Static (off-line) scheduling
schedulability analysis is done off-line, i.e. before run-time
---> the used scheduling algorithm has complete a priori - knowledge about all relevant task parameters,

i.e. a deterministic system and environment is assumed

Dynamic (on-line) scheduling
schedulability analysis is done on-line, i.e. at run-time
---> the used scheduling algorithm must not (cannot) have complete a priori - knowledge about all relevant

task parameters
---> provides predictability w.r.t. individual task arrivals

(Timing) Fault-Tolerant scheduling
trading predictability and enhanced throughput for potentially degraded functionality of individual tasks

Schedulability

A set of tasks is schedulable or feasible if all deadlines are met by some algorithm.

An algorithm is optimal for a given task set if it fails to meet all deadlines only if no other algorithm can
meet all deadlines, i.e. it always generates a feasible schedule if one exists.

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (22)

Table of Task Execution Timing Parameters

Determining whether a given task set is feasible is called schedulability testing. The outcome can be
• sufficient: passing it indicates that it is feasible
• necessary: failing it indicates that it is not feasible
• exact: sufficient and necessary

Utilization-based Tests
• fail, if the generated schedule will use the CPU more than a given percentage
• are sufficient, but not necessary

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (23)

Processor utilization factor U:
Given a finite set Γof n periodic tasks τι, U is the fraction of processor time spent in the execution of Γ, i.e.

U = Σ Ci/Ti (i = 1,...,n)

Uub (Γ,Α) is the upper bound of U for Γ under a given algorithm A in order to be feasible

U = Uub (Γ,Α) −−−> Γ is said to fully utilize the processor under A (full does not mean optimal utilization)

Ulub(A) = min Uub(Γ,Α) is the least upper bound for all Γ with U = Uub(Γ,Α)

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (24)

Response Time - based Tests
• determines for each task Tmax by computing WCET + Tint and comparing it with Tdead.

• are exact
Acceptance Tests
• provide predictability w.r.t. individual task arrivals
• are sufficient

Rate-Monotonic Scheduling Algorithm (RM)
• designed for static scheduling of independent periodic tasks (all periods and WCET´s are known)
• the task´s priority is inversely related to its period ---> tasks with smaller periods have higher priorities
• it is preemptive and based on static priorities
• if for all tasks Txmax = TR , it is optimal among all fixed-priority algorithms
• Ulub <= ln2 is a sufficient condition for the schedulability test, Ulub <= 1, if the task set is harmonic,

meaning that all periods are multiples of the smallest period

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (28)

Note:

Since RM is optimal among all static assignments, an improvement of the

bound for U can be achieved only by using dynamic scheduling algorithms.

Example of a rate-monotic schedule

Heuristics for dealing with sporadic tasks:
• modeling them as pseudo-periodic by defining TR = TRmin

Main drawback: most of the periods are empty --> very low processor utilization
• Adding a periodic server task with high priority to serve the pending sporadic requests (sporadic server)

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (29)

Example of an earliest deadline first - schedule

Earliest Deadline First Scheduling Algorithm (EDF)
• designed for static and dynamic scheduling of independent periodic and sporadic tasks
• the task´s priority is inversely related to its absolute deadline ---> tasks with shorter deadlines

have higher priorities
• it is preemptive and based on dynamic priorities
• It is optimal among all algorithms
• If used for static scheduling, U<= 1 is a sufficient condition for the schedulability test

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (30)

Comparison EDF <---> RM by means of an example

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (31)

Example of the domino effect

The last example constitutes a best-effort approach
---> no feasibility checking is done

---> no individual task deadline can be guaranteed
---> provides no predictability

Classification of scheduling policies

Several scheduling policies exist, depending on whether
• a system performs schedulability tests at all
• if so, when it is done
• what type of schedule is produced as a result of the analysis
• whether fault-tolerance is considered

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (32)

Problem: What if applications with timing requirements can provide only uncertain timing
parameters?
Distribution of Termination Times

Two important classes of guarantee-based dynamic scheduling for overload situations

• robust
- different policies for task acceptance and guaranteed timely execution
- often using a reclaiming mechanism for accepted but later rejected tasks

• fault-tolerant

- trading functional redundancy for predictability

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (33)

Problems with WCET’s:

• dependent on hardware architecture,OS, compiler, PL ---> difficult to predict

• many features serve to improve average case behavior, n o t worst case behavior

Examples:

• caches, pipelining, virtual memory

• interrupt handling, preemptions

• optimizing compilers

• recursions

• Even more difficult if depending on the environment (embedded systems)

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (34)

Goals of TAFT (Time - Aware Fault - Tolerant) Scheduling

• No Handling of tasks with unknown or too pessimistic WCETs

• Introduction of Expected Case Execution Time (ECET)

• Still with Timing Guarantees

• Scheduled exception handling before the deadline

• Fault-Tolerance with respect to timing errors

• Graceful degradation in overload situations

• Tradeoff between functionality and timing

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (35)

TAFT Scheduling

• Each module is scheduled as a task pair consisting of a main part and an
exception part

– Main part: actual module functionality, ECET scheduled

– Exception part: module specific exception handling, WCET scheduled

• Timing faults are confined to modules

time
ExPart

deadlinerelease
time

MainPart other
TP

ECET

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (36)

Three-level Scheduling:
•Level One – ExceptionParts

–Highest dispatching priorities
–LRT (Latest Release Time - Reverse-EDF)
–Tries to do everything as late as possible

•Level Two - MainParts executed within the reserved (and guaranteed) ECET
–Medium dispatching priorities
–EDF
–Tries to do everything as soon as possible

•Level Three - MainParts executed beyond the reserved (and guaranteed) ECET
–Lowest dispatching priorities
–EDF
–Tries to do everything as soon as possible

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (37)

ECETt,p of task-instance t of task τ with probability p

– CPU-time required to complete task-instance t with probability p

– p-quantile of the probabilistic density function of T’s execution time

ECETt,k,n - The minimal execution time that was needed to successfully complete at
least k out of the last n most recent executions of τ before t.

– A statistic quantity

N
um

be
r o

f E
xe

cu
tio

ns

Execution Time

ECET

Vorlesung “Echtzeitsysteme”, WS 04/05 E. Nett

Real-Time (Paradigms) (38)

