Distributed Simulation of Wireless
Networks with ns-2

— Master’s Thesis —

Svilen Ivanov

Otto-von-Guericke University — Magdeburg
Faculty of Computer Science
Institute for Distributed Systems

Supervision: Prof. Dr. Edgar Nett
Dipl.-Inf. Daniel Mahrenholz

i

Abstract

Ns-2 is a widely used simulation tool for computer networks. However, wireless network
simulations are time-consuming because ns-2 is a sequential simulator and models
wireless networks up to a high detail. The long simulation runs are inconvenient for
the development of communication protocols, because they prolong the development
cycle. This motivates the goal of the thesis to speed up wireless network simulations
by using parallel and distributed simulation techniques. The task of this thesis is
to integrate a distributed simulation system in ns-2, that allows to simulate wireless
networks on multiple computers within one network.

This thesis develops an extension to the ns-2 to simulate wireless networks with
stationary nodes in a parallel and distributed fashion. The solution uses graph
partitioning techniques to automatically separate the model, which has a size from 100
to 1000 nodes. Then, the model is run on a cluster of interconnected computers using
distributed synchronisation methods. The solution of the thesis allows also parallel
simulations on multiprocessor computers with the same implementation. Experimental
results show that the task of the thesis is solved. Parallel and distributed simulations
are correct and produce the same results as sequential ones. However, the solution
does not reduce the running time of the simulations in the general case, because of the
high amount of time spent on management of the distributed simulation. Speedup is
achieved only in special cases, which require a minimum management overhead.

This thesis shows that the resulting speedup highly depends on the used knowledge
about the simulation model. Additional investigations are needed in order to use
a higher level knowledge for the management of parallel and distributed simulation.
Experimental results show that the use of this knowledge would speed up parallel
simulations of wireless networks.

v

CONTENTS

Contents

1

Introduction

1.1 Context of the Thesis
1.2 Motivation for the Thesis
1.3 Goalof the Thesis
1.4 Task Definition
1.5 Document Structure

Fundamental Knowledge

2.1 Sequential Discrete-event Simulation
2.2 Distributed Discrete-event Simulation
2.3 Wireless IEEE 802.11 Networks
2.4 The ns-2 Simulator
2.5 Lookahead in Wireless Network Models

Related Work Study

3.1 Purposes of the Study oL
3.2 Ideas from Other Research Projects
3.3 Contributions to the Thesis

Design of the Simulation System
4.1 Design Purposes. Lo
4.2 Choice of Distribution Type
4.3 Overall Design.
4.4 Design of System Components
4.4.1 Method for Model Partitioning
4.4.2 Method for Synchronisation
4.4.3 Method for Message Exchange
4.5 Design Idea: Replicated Simulation
4.6 Design Interpretation Lo

Implementation of the Simulation System

5.1 Implementation Strategy

5.2 Implementation Overview

5.3 Implementation of System Components
5.3.1 Model Partition oL
5.3.2 Distributed Execution 00000000
5.3.3 Postprocessing of Results

5.4 Evaluation of the Implementation

= IR AN

© ©

16
21
23

27
27
27
29

31
31
32
33
34
34
36
40
44
47

vi

6 Experimental Evaluation
6.1 Goals and Expectations of Experiments
6.2 Organisation of Experiments
6.3 Correctness Tests

Simulation Results Test

6.3.2 Repeatability Test

6.4 Speedup Tests

Speedup Measurement

6.4.2 Speedup Estimation
6.5 Interpretation of Results

6.3.1

6.4.1

7 Conclusions and Outlook

References

CONTENTS

LIST OF FIGURES vii

List of Figures

1.1
2.1
2.2
2.3
4.1
4.2
4.3
4.4
5.1
2.2
9.3
5.4
3.5
2.6
2.7
6.1
6.2
6.3
6.4
6.5
6.6

Simulation running time, depending on the number of nodes 5
Space/time domain of event-level decentralized DES 13
Conservative synchronisation 14
Hidden station problem 17
Overall system design 34
Network partitioning methods o000 36
Partitioned graph with sensing ranges 45
Replicated simulation of bordernodes 45
Implementation strategy 50
Implementation overview ol
Graph partitioning objectiveo 04
Partitioned graph o oL 95
Graph parts for two simulators 55
Operation Send Message« vt v i it 59
Operation Receive Message and Advance Time 61
Difference in simulation results 70
Problem of replicated simulation 71
Network model for repeatability test 74
Speedup depending on lookahead 78
Estimated speedup L L 80

Message intervals distributiono 00000 80

viil

LIST OF TABLES

List of Tables

4.1
4.2
4.3
6.1
6.2
6.3

Conservative vs. optimistic synchronisation 38
Synchronous vs. asynchronous notification methods 41
Choice of communication protocol 42
Parameters for correctness test 69
Repeatability test — symmetric network 74

Repeatability test — asymmetric network 75

LIST OF ALGORITHMS ix

List of Algorithms

2.1 Algorithm of discrete-event simulator 10
2.2 Algorithm of IEEE 802.11 MACDCF 19
5.1 Conservative synchronisation algorithm o8

LIST OF ABBREVIATIONS

List of Abbreviations

BMBF
CSMA/CA
CSMA/CD

CTS
DCF
DECT
DES
DFG
GEA
TEEE 802.11
IFS

ISM

LP

MAC
NAV
NS-2
PCF
PHY
RNG
RTS
RUDP
TCP
UDP
WIGWAM
WINDECT
WLAN
XTP

German Ministery of Education and Research

Carrier Sense Multiple Access with Collision Avoidance
Carrier Sense Multiple Access with Collision Detection
Clear To Send

Distributed Coordination Function

Digital Enhanced (former European) Cordless Telecommunications
Discrete-event simulation

Deutsche Forschungsgemeinschaft (German Research Foundation)
Generic Event Application Programming Interface
Standard for wireless local area networks

Inter-frame Space

Industry Science Medicine

Logical Process

Medium Access Control

Network Allocation Vector

Network Simulator 2

Point Coordination Function

Physical layer of the OSI Reference Model

Random Number Generator

Request To Send

Reliable User Datagram Protocol

Transport Control Protocol

User Datagram Protocol

Wireless Gigabit With Advanced Multimedia Support
Wireless Local Area Network with DECT Telephony
Wireless Local Area Network

Express Transport Protocol

1 Introduction

1.1 Context of the Thesis

Simulation is a development technique that is widely applied in many areas of research
and industry. It is used to predict the operation of a real or imaginary system by
inspecting an artificial representation of this system, called model. The benefit from
simulation is knowledge about the behaviour and properties of the system, that can be
used for different purposes.

One application of simulation is to predict the evolution of an existing system. Here
the question is how a real system is going to evolve in the future. Simulation uses a
current status of the system in order to predict future state(s) before the system evolves
and reaches them in reality. In this case simulation gives information about the future.
A typical example here is the weather forecast.

Another application of simulation is the development of a completely new system.
Then, a model of an imaginary system can be used to test its design before the system
is constructed in reality. This method can safe time and resources in the development
process. Consider that a government plans to build a railway transportation system
on the territory of its country. This is a complicated, time consuming and expensive
process and therefore requires a thorough planning before it is started in reality. A
simulation can help here, because it allows to easily modify a model and test different
designs of the system. Another advantage is that simulation can test the system under
reproducible conditions. This facilitates the planning, because different designs can be
tested under the same conditions in order to choose the best one. The repeatability of
simulation also helps to locate and correct errors in the design or the implementation.

Another important application of simulation is by a modification of an existing
system. If an existing system has to be modified, while it is in operation, a simulation
may be useful to predict the effects of the changes on the system. Consider that the
government wants to extend the railway transportation system by an additional track.
Then, they have to first analyse how the new track and the traffic on it will influence
the current system, and whether existing timing plans for trains can be kept, or they
need a new schedule. Since the railway system is already in operation it is useful first
to test the modified system in a simulation, and then realize the changes in reality.
This can avoid design errors and reduce the outage times during the realization of the
changes.

In the context of this thesis, simulation is applied in the second and the third
case. It is used to design a completely new system, which can be later additionally
modified. However, as the title of the thesis implies, the context are not railway
systems, but computer networks. Computer networks, like the transportation systems
are also complex, and their proper operation requires a comprehensive planning.

Wireless networks are a technology that allows users to communicate over-the-air

2 1 INTRODUCTION

without installation of wires. They have shown a continuous growth in the last years.
This is mainly because they are easier to install than the wired ones. Another big
advantage is that they support the mobility of the users. At the beginning the wireless
networks have been designed primary for pure data transfer without requirements for
high bandwidth and interactive applications. But as their size and popularity increased
the user requirements also increased. Currently the application requirements on
wireless networks raise continuously and approach the requirements on the wired ones.
These are for example multimedia applications like video conferencing, which require
a high bandwidth. Another examples are time critical applications like telephony over
wireless networks. They require a timely delivery of voice data in order to achieve a
good speech quality. Another application is the coordination of a fire brigade during
operation via a wireless network. Since this scenario does not provide an existing
network infrastructure the firemen have to build a network on-the-fly (ad-hoc) in order
to communicate and synchronise their actions. Also, it might not be possible for every
two firemen to communicate directly through a wireless network. They might be spread
over a large distance, or between the walls in a building. So, the communication devices
have to organise a multihop ad-hoc network and provide a transparent connectivity
to the firemen. The devices may act both as end stations, and as routers for other
communication flows.

However, wireless networks have many different features than the wired ones. These
are mainly higher error rate, lower bandwidth, signal interference with other networks,
highly dynamical topology. These properties have in most cases a negative impact
on the applications and they do not perform as well as in wired networks. Therefore
the research in wireless networks nowadays increases significantly. One example is
the WIGWAM project, funded by the German Ministry of Education and Research
(BMBF). Its goal is to develop a complete system for wireless communications at
an ultra-high data rate of 1GBit/s to support multimedia applications[16]. Another
example is the EU research project WINDECT, which is addressed to the time-critical
voice applications. Its goal is to integrate a professional quality telephony into wireless
networks [10].

This thesis is developed in the group of Real-time Systems and Communications
at the Computer Science faculty at the Otto-von-Guericke University in Magdeburg.
This group also takes part in a research project on wireless networks. It is a
DFG (German Research Foundation) priority program under the name: “Middleware
for Self-organising Infrastructures in Networked Mobile Systems”. The goal of the
program is to develop methods and techniques for communication middleware in
mobile multihop ad-hoc networks. The project at the Otto-von-Guericke University is
called: “A Publisher/Subscriber-based Middleware with Quality of Service Guarantee
to Support Mobile Applications”. Its goal is to develop transport and routing protocols
which guarantee fault tolerance and timely correct delivery in multihop wireless

1.1 Context of the Thesis 3

networks. The size of the target networks is in the range from 100 to 1000 nodes|3].
A typical application scenario is the coordination in a fire brigade, described above.
Another application is to locate services in a mobile wireless network, based on their
names. For example, this provides to the applications a service to use the nearest
printer, or the nearest Internet gateway without considering the multihop and dynamic
structure of the network.

Like the development of a transportation system, the design and implementation of
a communication protocol has a complicated nature. A protocol has a similar design
to an algorithm, but an algorithm usually operates in one unit, while a protocol is
always run by multiple units at the same time, which interact with each other. So, the
design of a protocol requires to think in parallel, and on behalf of multiple units in one
network. This parallel thinking is difficult for a single mind of a human. Therefore
a design of a high-requirement protocol only with a flowchart like an algorithm can
hardly predict all possible situations and program flows.

Therefore, the development and testing of the communication middleware at the
group of Real-time Systems and Communications goes through a simulation phase.
Simulation is used to obtain information about the protocol, and to test whether it
satisfies the requirements before running it in real networks. Simulation helps because
the target networks are relatively big and hard to build and maintain during the
development. Moreover, simulation is a convenient development framework, because
it allows easily adjustable and reproducible testing conditions. This facilitates the
evaluation of the middleware in different environments and the test and debugging of
its operation.

The development cycle of a communication protocol in our group goes through the
following phases. First is the definition of requirements to the protocol, i.e. which
services it should provide and with which quality. Then the protocol is designed and
implemented in a simulation, with the goal to satisfy the requirements. Then the
protocol is statistically evaluated to test whether it satisfies the requirements. If the
protocol does not satisfy the requirements, it is again redesigned, this time with more
information from the tests, and again implemented. This is a continuous cycle, which
aims to improve the quality of the protocol with each iteration.

During the second stage of this cycle (the implementation phase) the simulation is
periodically run in order to test whether the protocol provides delivery of packets. This
simulation aims to show whether the implementation is operational and the protocol
provides connectivity in the network. It has to answer the question whether the
simulation is operating, and not how it is operating. Therefore statistical analysis
is not needed at this step. The protocol is analysed statistically after its design is
completely implemented, which completes a single iteration in the development cycle.

The simulation tool, that is used at the group of Real-time Systems and
Communications is the network simulator ns-2|9]. It is a discrete-event network

4 1 INTRODUCTION

simulator that can simulate a wide range of networks, including wireless ones. Ns-2 is
freely available, widely used and continuously developed in research and industry. It
makes a good approximation of the lower wireless network layers (Data Link, Physical)
and is well-suited for development of network protocols at the higher layers (Network,
Transport). Furthermore there are extensions of ns-2, developed in our group, which
facilitate the development of communication protocols. They are part of the GEA
(Generic Event API) middleware, which allows to use the same implementation of a
protocol both in simulated and in real networks|[20]. Therefore ns-2 is tightly coupled
with the development in our group, and actively used for wireless network simulations.

1.2 Motivation for the Thesis

The simulations of wireless networks with ns-2 are time-consuming. This is due to
the detailed simulation of the lower network layers, the broadcast nature of wireless
networks and high number of nodes (100 ... 1000). Ns-2 models the data link and
physical layers up to a high detail — according to the IEEE specifications for wireless
networks|22]. The high number of nodes and the broadcast nature of wireless networks
further increase the complexity of the simulation. For example, when a node sends a
packet, all other nodes within a given range have to be notified about it, which increases
the number of computations quadratically.

Another reason for long-running simulations is that ns-2 is a sequential simulator.
This means that it uses a single processing unit to execute the model. Ns-2 in its
standard version can not run in parallel on multiple processors.

Figure 1.1 represents a measurement of the running time of the simulator. It shows
the needed running time for one second simulation, depending on the number of nodes.
The model is a wireless ad-hoc network in ns-2, running a simple polling protocol. The
hardware platform, used to run the simulation, is a laptop with a 1.4 GHz Pentium M
Processor.

When the number of nodes is in the range 100...200 one second simulation time
takes nearly 1 second running time. When the number of nodes increases up to 500,
the running time of the simulation is bigger than the simulation time by almost a factor
of 10. This means that a single simulation run of 3 minutes would take almost half
an hour to complete. Three minutes is a relatively short time for the operation of a
network. But periods of this magnitude are used during the development phase to test
the implementation of the model.

The long simulation runs are inconvenient during the implementation phase of the
model. During this phase the simulation engineer performs a single simulation run
after each change in the model. The goal of this run is to show whether the model
is operational or not. The long running time is inconvenient because the developer
has to wait long time after each minor change in the model. This waiting time
increases the time for one development cycle and leads to less iterations during the

1.3 Goal of the Thesis 5

One second simulation time

’ /

6 /
4 e

2 /
—

T T T T T
0 100 200 300 400 500 600
Number of nodes

Running time [s]

Figure 1.1: Simulation running time, depending on the number of nodes

whole development process. On the other hand each iteration through the development
cycle possibly increases the quality of the communication protocol.

So, the wish to increase the quality of communication protocols have motivated a
wish to decrease the running time of simulations.

1.3 Goal of the Thesis

The goal of this thesis is to reduce the running time of simulations with the network
simulator ns-2. The reduction of running time should be achieved by using multiple
processors, that work together to complete the same simulation task. These processors
can be either single workstations, connected by a network, or parts of a multiprocessor
machine.

The goal of the thesis can be more exactly defined, by using the term speedup.
Speedup is a relation between the running time of one simulation in a sequential
simulator T, and the running time of the same simulation in a parallel/distributed
simulation T,

Tseq
Speedup T
The speedup is positive, when it is greater than one. This means that the parallel
or distributed simulation runs faster than the sequential one. The speedup can be
theoretically maximum the number of processors in a distributed simulation, but in
practice it is lower, because the organisation and control of a parallel/distributed
simulation also takes processing time. If this organisation and control takes too much

6 1 INTRODUCTION

time it is possible that the speedup becomes negative. This means that the speedup is
less than one. In this case it is not appropriate to use a parallel /distributed simulation,
because the sequential one is faster.

The goal of this thesis is to achieve a positive speedup from distributed simulations
of wireless ad-hoc networks with the ns-2. The goal can be defined explicitly by the
expression:

Speedup > 1

1.4 Task Definition

The task of this thesis is to find and implement a distributed way of execution of
the model in ns-2. The model should run on a cluster of computers, connected by a
Fast Ethernet network.

The task is divided into the following major subtasks:

1. Automatic Partitioning

Automatic partition of the simulated network is a preparatory step for the
distributed execution. Due to the big size of the target networks (100...1000
nodes) the partition can hardly be done by hand. So, this first subtask has to
divide the model of the initial network into sub-models, which can be executed
in parallel. The resulting partition should maximise the speedup, gained by the
distributed execution.

2. Distributed Simulation

Extend the ns-2 to simulate a wireless ad-hoc network in a distributed fashion.
This is the main part of the work. The task at this step is to execute the model on
multiple processors and provide the same results as when the model is executed
sequentially. The main challenge is to maintain the integrity of the model in the
distributed execution. A requirement to this subtask is to provide a possibility
for parallel execution of the model. This is a possibility to use a multi-processor
machine to execute the model instead of a network cluster.

Since the complexity of the task is relatively high for a master’s thesis, a simplification
of the problem is made in order to reduce it. The simplification is that the network
nodes in the model do not move during the simulation. The communication method is
still ad-hoc, but the nodes keep their initial positions. The movement of nodes increases
the complexity, because it introduces dynamics in the model and in the simulation
infrastructure. If the nodes move, periodical re-partitions and re-organisation of the
distributed simulation should be done, which increases the complexity of the design
and implementation.

1.5 Document Structure 7

Note that the fastest speedup of a simulation run can be achieved by using
independent replications of the model on different machines in parallel. This method
runs the same model sequentially and independently on different machines, but with
different random number streams. Independent replications are used for statistical
analysis of the simulation results|14].

This work is aimed to speedup a single simulation run and should not be used for
statistical analysis. It is designed for the implementation phase of the model due to
the frequent changes and test runs in this period.

1.5 Document Structure

This thesis has the following structure. Section 2 defines terms and gives background
information, used in the rest of the document. After that, section 3 discusses works,
related to distributed simulation of wireless networks. Section 4 explains the solution
of the task on an abstract level. It is concentrated on the design decisions taken to
complete the thesis task. Section 5 describes technical details of the implementation.
Then, section 6 describes experiments that test and evaluate the solution. Finally,
section 7 concludes the thesis and gives possible directions for future research.

1 INTRODUCTION

2 Fundamental Knowledge

This part of the document introduces basic terms and definitions used in the work. It
discusses topics, which are a base for the rest of the thesis. Sections 2.1 and 2.2 are
a short introduction of Discrete-Event Simulation (DES). They describe the principles
of sequential and distributed DES. Section 2.3 describes the basic operation of wireless
IEEE 802.11 networks. The discussion is focused on the properties, represented in the
model of ns-2, and relevant for their simulation. Section 2.4 discusses the basics of the
network simulator ns-2 and concentrates on the operation of the WLAN model. Finally,
section 2.5 discusses properties of wireless networks, used for parallel and distributed
simulation.

2.1 Sequential Discrete-event Simulation

Parts of this section are based on a lecture, and a book for computer simulation [14, 21].

Simulation Simulation is an imitation of the action of a real system and its
development over time. Simulation generates an imaginary history of the system, which
is used to inspect and evaluate the system. Simulation is based on a model. A model
is a representation of the real system, which consists of variables and assumptions for
its operation. The variables correspond to values of interest in the real system, e.g a
number of collisions in a computer network. The assumptions represent dependencies,
actions and development of the system. They are usually based on the variables and can
be analytical (equations or relations), algorithmic (description of operations), logical
(conditions). The model is run in order to analyse/predict the operation of the real
system. The points of interest are usually the variables and statistics based on them. In
network simulation these can be the number of packet transmission errors or the average
packet transmission time. A simulation is called discrete-event when the changes in the
model happen in distinct moments in time. These moments are defined and calculated
by the model. No changes occur in the model between two such consecutive moments.
Discrete-event simulation can be used to simulate computer networks. They have a
discrete nature since they progress stepwise e.g. “join a network”, “receive data”, “send
data”.

Event The base term in discrete-event simulation is event. An event is an activity
that happens in the model at a given moment in time. It represents an action that
occurs in the real system being modelled. An event may change model variables and
schedule another event(s) that happen as a consequence. One example is the “send
data” event. It marks one data packet as sent and schedules a “receive data” event
on the destination host after a period of time. This period is the packet transmission
time, that is calculated by the model using its assumptions.

10 2 FUNDAMENTAL KNOWLEDGE

Algorithm 2.1 Algorithm of discrete-event simulator

® start

no events exist

events exist

e 2
| get next event/\

g N
| advance simulation time |
\)

|execute event |

——®@ end

Simulation Time One of the first abstractions, made in building DES models is
the abstraction of time. Simulation time is a virtual time used to run the simulation
model. Since no changes occur between two consecutive events the simulation time
evolves also stepwise. It jumps over the moments at which the events happen. So, the
algorithm of a discrete-event simulator can be described on figure 2.1.

The algorithm is relatively simple. The events are stored in a list ordered by their
timestamp. The simulator takes the next earliest event from the list, advances its
virtual simulation time to the event’s timestamp and executes the event.

Random Variables Another abstraction usually made in the simulation models is
the use of random wvariables. They are used to model a given random phenomenon in
the real system by a sequence of pseudo random numbers with a similar distribution.
A classical example here is the time, that a server needs to perform a task. It is usually
modelled by a random variable which has an uniform distribution with parameters the
mean value ; and the variance o2. In simulation, the time in which a server performs
a task is determined by taking a pseudo random number from the used distribution.
These pseudo random numbers are generated by random number generators (RNG).
A RNG is an automaton that produces a sequence of numbers, that seem to be
random. These sequence depends on a starting value, called seed of the RNG. If
the same seed is used twice, then the RNG produces the same sequence of random
numbers. So, the result of the simulation remains the same i.e. the simulation is
reproducible. But when the seed is changed, the sequence also changes, which leads to
a different simulation result. The method of independent replications is used to obtain

2.2 Distributed Discrete-event Simulation 11

a statistically significant simulation result [14].

Event Relations An important relation between events in sequential DES is the
affect. An event A affects event B if the following conditions hold:

1. A occurs before B, and

2. A modifies model variables that B uses, i.e. the changes that A makes to the
model are relevant for B.

In this case it is also said that B depends on A. This relation is transitive, e.g. if
A affects another event A’ and A’ affects B, then A also affects B. If A does not
affect B and B does not affect A, then A and B are called independent. Based on the
independence we can define the following lemma, which is important for distributed
DES:

Lemma Two events can be executed in any order if they are independent and have
different timestamps.

Proof Let A and B be two independent events and A has the smaller timestamp.
Then A can be executed first, because it should happen before B. B can also
be executed first, because A does not affect it (from the independence), i.e. it is
irrelevant for B whether A has been executed or not. The proof is similar if B
has a smaller timestamp.

This lemma is very useful in distributed DES, because it allows to execute independent
events in parallel.

2.2 Distributed Discrete-event Simulation

Distributed Simulation Distributed DES is a discrete-event simulation, that is
executed on many interconnected computers at the same time[18]. These computers
are connected by a network, and may be spread over small areas (e.g. a room,
or a building), or large areas (e.g. Internet). On the other hand, Parallel DES
is a discrete-event simulation, that is run concurrently on many processors in a
multiprocessor environment. A difference between parallel and distributed simulation is
that distributed DES implies higher communication latency than parallel DES. This is
because computer networks usually have much higher latencies than shared memories.
This section discusses distributed simulation, but most of the terms are also valid for
parallel simulation.

12 2 FUNDAMENTAL KNOWLEDGE

Logical Process A basic term in parallel /distributed simulation is logical process
(LP) [18]. It is a representation of a physical process in the real system, being modelled.
The real system is viewed as a composition of physical processes that interact in some
way. In the model of this system each physical process is represented by a logical
process. The interactions among the physical processes are modelled by message
exchange among the logical processes. Lets take a computer network as an example
of a real system. Then we can consider the network nodes as physical processes and
the packets that these nodes exchange as the interactions. In the model each network
node is represented by a logical process, and the network packets by messages that the
LPs exchange. Note that the notion of a physical process in the real system can be
defined by the modeller. We can consider also a group of nodes (a subnetwork) as one
physical process and the packets that flow among subnets as the interactions. Then
each LP represents a subnetwork and the packets between the subnetworks could be
modelled by exchange of messages between the LPs.

In the context of this work a logical process (LP) also denotes the simulator
executive, that models a physical process in the real system (network). In this sense
the phrases “synchronisation among LPs” or “message exchange among LPs” mean
interactions among the simulator executives, running a parallel /distributed simulation.

Decentralized event level distributed DES A discrete-event simulation can be
distributed at different levels [15]. This means to choose properties of the simulation
model, that will be used to execute it in a distributed way. Next, I focus on
the decentralized event level distribution. Section 4.2 discusses other distribution
levels, together with their advantages and disadvantages and motivates the choice of
decentralized event level distribution in this work.

Decentralized event level distribution operates as follows. The model is divided in
the space domain and different parts of the space are assigned to different simulators
(see figure 2.1). Each simulator executes the events in one part of the space (the model).
A high degree of parallelism can be expected if there are only few dependencies between
events in different subspaces. Figure 2.1 shows the space-time domain of one simulation.
The points are events and the arrows represent dependencies. Event B depends on
event A, D depends on B and so on. The event C' is independent from A, B and D,
so it can be executed in parallel to them. However, this level of distribution requires
a synchronisation protocol to ensure the correct execution of the model. Otherwise, if
both simulators have advanced their times up to ¢; and ¢, respectively, the event D
affects event F in the past which is not correct.

Synchronisation There are two common approaches for synchronisation among LPs
in decentralized event level distributed simulation. One of them is called Conservative,
and the other one Optimistic. Their goal is to guarantee that a distributed simulation

2.2 Distributed Discrete-event Simulation 13

Simulation space

t
1
Simulation time

Figure 2.1: Space/time domain of event-level decentralized DES

produces ezactly the same results as a sequential one with the same model. This does
not necessary mean that all the events in the model have to be executed in timestamp
order. It is only necessary that it seems so, i.e. independent events can be run in
parallel or out of order. The conservative techniques keep the so called local causality
constraint. This means that each LP guarantees that all the events it processes are
strictly in timestamp order. This constraint avoids situations like the one depicted
on figure 2.1 (event D affects event E in the past). The optimistic synchronisation
protocols allow such situations, but they take measures to recover from them and
guarantee the correctness of the simulation.

Conservative Synchronisation The conservative methods were first introduced by
Chandy and Mirsa in [12]. They are based on the property lookahead. Lookahead is a
time interval in the future in which an LP guarantees that it will not sent any messages
to another LP. This interval starts with the current simulation time of the first LP and
its length is defined by using model specific knowledge and may vary through the
simulation. Each LP calculates its lookahead time interval and reports it to other LPs
whom it may send a message. Based on this information each LP determines a so called
safe window, in which it is sure that it will not become any message from any other
LP. So all the events in this safe window are known to the LP and can be processed in
timestamp order. This idea is illustrated on figure 2.2.

In this simulation there are two LPs. Both of them calculate their lookahead
intervals at the current time 77 and 75. Each LP reports the upper bound of its
lookahead interval to the other LP. The reported timestamp means that an LP will

14 2 FUNDAMENTAL KNOWLEDGE

safe events unsafe events

LP1 | |
T1 1 2 | 6 7
] < >]
"lookahead |
I
I

|
Lng’gl
T.1'3 4 '5

2
' lookahead

|
s

Simulation time

Figure 2.2: Conservative synchronisation

not send any message to the other one until that time. Based on this information and
its current time each LP calculates its safe window where the events can be processed.
The events after the safe window are not allowed for processing. The events {1, 2, 3, 4}
on figure 2.2 are safe and can be processed in parallel, while the events {5, 6, 7, 8} are
unsafe and can not be processed in parallel. If an LP reaches the end of its safe window
it has to wait for the other LPs to reach that point and report their lookaheads.

Lets take a model of an Internet router as an example for extracting a lookahead.
Let the minimum time it takes to forward one IP packet from an input port to an
output port is Ty. Then, if the router does not have any packets in its buffers, it knows
that there will be no packet sent through the output port at least for the next 7. This
is because even if a packet arrives immediately it will take at least T to forward it.
The job processing time is a typical source of extracting lookahead from the model —
it can be applied to other kinds of models.

The lookahead value has a direct influence on the speedup of a distributed
simulation. If the lookahead is big, then the safe windows are also big and the LPs can
operate in parallel with few synchronisations. If the lookahead value of a model is small,
then the LPs will more often have to stop event processing and do synchronisation.
This reduces the speedup, gained from a distributed execution.

Optimistic Synchronisation The optimistic strategies proceed with the execution
of events as far as they can in the future and assume that no messages will come in the
past. So, they allow violations in the local causality constraint but take measures to
recover from them, if the above assumption is wrong. These measures are state saving
and rollback. State saving is a backup of the state variables at a given simulation time.
The backup contains all the necessary variables and structures that are needed to
proceed with the model from that point in time. State saving can be done periodically,
or after the execution of each event. It keeps a history of the system for the case that

2.2 Distributed Discrete-event Simulation 15

the local causality constraint is violated. Rollback is a process of restoring a previously
saved state. It is caused by a message, that has a time-stamp in the past simulation
time i.e. straggler message. A straggler message indicates that the computations in the
interval from its time-stamp to the current time are wrong and have to be thrown away.
When a straggler message is received, the simulation is stopped and the most recent
state before that message is restored. The message is then processed and the simulation
is restarted again from that point in time. The restore of a previously saved state
includes also the invalidation of all messages, sent during the wrong simulation interval.
These messages are cancelled, by sending the so called anti-messages. An anti-message
has the timestamp of the corresponding message and contains an indication that the
previously send message is invalid. Anti-messages can also cause rollbacks, if they
are received in the past simulation time. This phenomenon is called rollback chains,
because a straggler message in one LP can cause rollbacks in many other LPs in the
system. The most widely used optimistic synchronisation mechanism is Time Warp
[23].

The optimistic techniques have two advantages over the conservative ones. First,
they explore a higher level of the model’s parallelism. If the events A and B occur
periodically it may happen that A affects B not always, but occasionally depending
on the model. A conservative method will always execute event A first, even in the
cases in which it does not affect B. An optimistic approach will always try to execute
the two events in parallel, and make use of every opportunity for parallelism. The
second advantage of the optimistic methods is that they do not need model specific
information such as lookahead. They can make use of it, but it is not required. So, an
optimistic synchronisation can be more transparent to the model than a conservative
one.

The optimistic technique has also disadvantages over the conservative one. The
main disadvantage is that it is more complex. It requires implementation of state
saving and rollbacks. The state saving requires a specific design of the model for
distributed execution. The introduction of state saving mechanism in a sequential
model is not a trivial task. The rollbacks require "unsending” of all messages, that are
sent during the wrong interval of the simulation. This can cause chains of rollbacks,
chasing down incorrect computations, and rollback echoes [18]. Care must be also taken
for operations that can not be rolled back (I/O operations, program errors, possibly
caused by the inconsistency of the model). Another disadvantage of the optimistic
techniques is that they require more operating memory for state saving.

Time Difference Time difference between two LPs is the difference in their
simulation times. This measure shows the difference in evolution of the simulators.
Generally speaking, a small time difference among LPs in one simulation is a good
property. It is valid for both conservative and optimistic synchronisation. This is

16 2 FUNDAMENTAL KNOWLEDGE

because a conservative simulation develops with the speed of the slowest LP. The
faster LPs have to wait for its allowance before they can proceed. So, the smaller the
time difference, the smaller are the waiting periods, and the higher is the utilisation.
In an optimistic simulation each LP develops with its own speed. But the closer the
LPs are, the fewer computations have to be thrown away if a straggler message arrives
in the past. If the LPs are closer the rollbacks are also simpler, because the probability
for anti-messages and chains of rollbacks decreases.

2.3 Wireless IEEE 802.11 Networks

IEEE 802.11 is a standard for Wireless LAN Medium Access (MAC) and Physical
Layer (PHY) Specifications. It specifies an over-the-air protocol for local area network
communication [22, 19, 13]. The term wireless means that these networks do not use
cables (wires) for transmission of signals. The wireless networks use other physical
phenomena that allow to transmit signals through the air.

There are primary two types of wireless networks, depending on their physical
organisation: infrastructure and ad-hoc. Infrastructure networks use an existing and
structured base network. It consists of access points, which are fixed stations and may
provide connectivity to other networks. Mobile stations are assigned to the access
points and can use them to connect to other parts of the network. On the other hand,
ad-hoc networks do not use any predefined network structure. They consist solely of
stations within a mutual communication range with each other and communicate via
the wireless medium|22]. These networks are created in a spontaneous manner without
the need of specific technical skills. An extended variant of ad-hoc networks are the
multi-hop ad-hoc networks. They spread over larger areas and it is no longer possible
for every two stations to communicate directly through the medium. These networks
use dynamic routing protocols, where each station, besides sending and receiving own
packets, serves as a router to other stations. The stations that are out of communication
range search for a path through the network and communicate via other stations.

The main parts of the IEEE 802.11 standard are the Medium Access Control (MAC)
and Physical (PHY) layer specifications for both infrastructure and ad-hoc networks.
The MAC layer is a part of the Data Link layer in the OSI Reference Model. It
controls the access to the physical medium, detects transmission errors at a frame
level. Additionally it transforms frames into sequence of bits and reverse, and notifies
the upper layers when a frame is destined for the host. The physical (PHY) layer is the
lowest layer in the OSI Model. The sender PHY encodes the sequence of bits from the
MAC layer in a transmission signal. The receiver PHY decodes the sequence of bits
from the signal, and possibly detects and corrects transmission errors at a bit-stream
level. This layer specifies physical parameters of the medium like frequency of the
signal and transmission power.

2.3 Wireless IEEFE 802.11 Networks 17

Figure 2.3: Hidden station problem

IEEE 802.11 MAC

The WLAN standard 802.11 provides two methods for medium access — Point
Coordination Function (PCF) and Distributed Coordination Function (DCF).

PCF The Point Coordination Function is a priority-based access to the medium, that
can be used in infrastructure networks. A central controller rules the medium access in
the network. The controller polls the stations sequentially in a logical ring, and each
poll is a permission (grant) to send one frame to the medium. This medium access
method is contention-free and can provide deterministic packet transmission times.
Therefore, it is used for real-time communications.

DCF The DCF uses a Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) method. It is a contention-based medium access method, similar to
the Ethernet (CSMA/CD). CSMA/CA is used in ad-hoc networks, since there is no
central controller there. The DCF uses two types of carrier sense — physical carrier
sense and wirtual carrier sense. The first one is achieved by using the status of the
physical interface. It reports whether the physical medium is busy or idle — similarly
to the Ethernet carrier sense. Physical carrier sense is sufficient in Ethernet, because
all the stations share the same physical bus and every station can sense a transmission
from any other. However, it does not suffice to detect collisions in wireless networks
because of fading of the signal. Therefore physical carrier sense provides only local
information and can not determine whether the medium is busy or idle at the receiver
side. This can be illustrated by the popular “hidden station problem”[31]. It is depicted
on figure 2.3.

The figure shows three wireless nodes — A, B and C. The circles around them show
the range in which other nodes can sense their transmission signals. Node A can sense
a transmission from node B, but not from node C because it is too far away. Node B

18 2 FUNDAMENTAL KNOWLEDGE

is in the middle and can sense transmissions from both A and C. Now imagine that
node C is transmitting a frame to node B and at this time node A decides also to
transmit to node B. If A used only its physical carries sense it would not sense the
transmission from node C. So it would decide that the medium is free and transmit.
But both transmissions would collide at the receiver B and neither of the frames would
be received correctly.

Virtual Carrier Sense To reduce the probability that this problem occurs the
standard uses virtual carrier sense. It is achieved by the MAC layer by placing duration
information in each frame. It shows the duration of a current transmission and informs
other stations to consider it in their medium access. The stations use this information
to maintain a Network Allocation Vector (NAV). This is a period of time in which
the medium is busy. The virtual carrier sense mechanism is implemented with RTS
(Request To Send) and CTS (Clear To Send) control frames. These are short messages
that inform other nodes in the network that a transmission will take place. When a
node wants to transmit a data frame it first sends an RTS frame to check whether the
medium at the receiver side is free. If the medium is free the receiver replies with a
CTS frame and then the transmission can start. The RTS and CTS frames contain
the duration of the intended transmission. All other nodes within a transmission range
are supposed to receive either the RTS, or the CTS (or both) and update their NAV
timers according the duration of the transmission. So, the NAV shows whether a
station is allowed to transmit or not. After the RT'S/CTS handshaking the sender
transmits the data frame. If the destination receives the data correctly it replies with
an acknowledgement frame.

Inter-frame spaces The DCF defines priorities of the different frame types by using
Inter-frame spaces. Inter-frame space (IFS) is a minimum time which should pass
between the transmission of two frames on the medium. There are three types if
inter-frame spaces used in DCF. They are in the range of [2...504us].

DCF Algorithm The basic algorithm of Distributed Coordination Function is
described by algorithm 2.2. The station first checks virtual carrier sense, then the
physical carrier sense and transmits if both of them allow. If the physical carrier sense
indicates that the medium is busy, or a collision occurs the station uses a random
backoff algorithm to reduce the probability of a subsequent collision[13].

IThe signal in wireless ad-hoc networks propagates equally in all directions from the sender.
Therefore the transmission area is a circle with centre — the sending node, and radius — the
transmission range.

2.3 Wireless IEEFE 802.11 Networks

19

Algorithm 2.2 Algorithm of IEEE 802.11 MAC DCF

® Start transmission

%{CCheck NAV

NAV > 0

NAV ==

[Perform Physical Carrier Sense\\ \/Random Backoff AIgorithm\\
- - J

Medium busy

Medium idle

/77.\
| Transmit |
A)

Collision

No collision
Finish transmission

20 2 FUNDAMENTAL KNOWLEDGE

IEEE 802.11 PHY

The physical layer of the WLAN standard IEEE 802.11 provides three methods for
wireless transmissions. Two of them use radio waves in the licence-free ISM frequency
band 2.4GHz and the other one uses infra-red (IR) light with wavelength 850 to 900 nm.
The radio methods use spread-spectrum techniques to divide the wireless medium into
set of communication channels. This allows the coexistence of multiple independent
networks within one area. Due to the popularity of radio networks in the recent years
the term “wireless” is widely used to denote radio networks. This is also the meaning
of “wireless” in the title of this thesis.

PHY Operations The main functions of the physical layer are Carrier sense,
Transmit and Receive. Carrier sense is used for detection of incoming signals, and for
clear channel assessment. The second reports to the MAC layer whether the medium
is busy or idle. The transmit function sends a frame in the network. It is used by the
MAC layer when it has a frame to transmit. The receive function receives a frame from
the wireless channel, and forwards it up to the MAC layer.

Radio Signalling The properties of the radio signal are important to understand
the operation of wireless networks. Key concepts are interference, transmission range
and carrier-sense threshold.

e Radio Interference

Radio interference is the influence of other radio waves in the network on a given
radio signal. If this influence is low enough, the signal can still be received
correctly. If it is too high it causes the incorrect reception of the signal. The
definitions of “low enough” and “too high” depend on the used modulation scheme,
error detection and correction mechanisms.

The IEEE 802.11 standard uses a measure, called signal-to-interference-plus-noise
ratio (SINR) to determine the quality of a signal. SINR is the ratio of the
reception power of the signal of interest P,;, and other signals at the receiver.
Other signals are all interference signals with power P;,,; and the noise with
power N.

P..

SINR = =5——
Each radio receiver defines a minimal SIN R which is required for the correct
reception of a signal (SINR > SINR,,;,). The value of SINR,,;,depends on
the error-coding and modulation methods used.

2.4 The ns-2 Simulator 21

e Transmission Range

SIN R,,;, determines the transmission range of a transmitter and a corresponding
receiver. It is the maximum distance at which the transmitted signal can
be received correctly in the absence of any other interference signals. The
transmission range is usually equal for every two stations in the network and
it is also called radio range.

e (Carrier-sense Threshold

A station in a radio network determines whether the medium is busy or idle based
on a preconfigured carrier-sense threshold (7s). This is the minimum power of
a carrier signal that is relevant to a station. If the power of the carrier is smaller
than Tg the medium is considered as idle. Carrier sensing range is the distance
within which all transmissions have at least a power of Tg. Typically Trg is
chosen such that the carrier sensing range is at least as the transmission range.

2.4 The ns-2 Simulator

Ns-2 (Network Simulator 2) is a discrete-event network simulator[9]. Its input is a
description of a network model, and its output is an imaginary history of this network.
The network model consists of network topology and traffic patterns. The network
topology describes the structure of the network together with activities during its
operation. Structural information is for instance the coordinates of nodes, the type
of physical network and networking protocols at different network layers. Activity
may be for instance a failure of a network node, an increase of packet transmission
errors due to interference with a neighbouring network, and many others. The traffic
patterns describe the behaviour of the applications in the network. This description
is application specific, but it usually defines the rate and size of packets which
an application sends in the network. These parameters can also have a random
distribution.

Ns-2 has mainly two kinds of output — a trace file and an animation file. The
trace file contains information about the history of the network, and it is intended for
statistical analysis. It includes an entry for each packet that is send in the network
between two nodes, or between two network layers in the same node. The entry
contains simulation time, source and destination nodes, packet sequence number and
other information needed for numerical evaluation of the network. The animation
file contains animation commands, that can be used together with the animation tool
nam (Network Animator)[6]. It can visually represent the simulated network via an
animation.

Ns-2 is a sequential simulator — it uses the standard discrete-event-simulator
algorithm, described in section 2.1. The main part of this algorithm is the simulator

22 2 FUNDAMENTAL KNOWLEDGE

scheduler. This is a controller that maintains the event list, ordered by the timestamps
of the events. The scheduler takes the next earliest event from the list and executes
it. The event performs an activity and possibly schedules (inserts) another events into
the scheduler list. After the execution the control comes again into the scheduler to
execute the next event.

Radio Model The ns-2 simulator implements a basic part of the IEEE 802.11
standard[22]. The MAC layer realises the Distributed Coordination Function (DCF)
by a CSMA/CA medium access method. Physical carrier sense is provided by the
physical layer and virtual carrier sense is implemented via RTS/CTS frames and the
use of a Network Allocation Vector (NAV). The data frames are transmitted using
the four-step frame-exchange sequence RTS / CTS / Data / Acknowledgement. The
MAC layer in ns-2 accounts for collisions, processes packets with transmission errors
and uses the inter-frame spaces of the standard (IFS). The random backoff algorithm
is also implemented.

The physical layer provides an abstraction of a wireless channel. It provides the
basic functions: Carrier Sense, Transmit and Receive, and implements a basic model
of radio signalling. The physical layer in ns-2 uses the same transmission power for all
wireless nodes. It calculates the propagation of the signal using radio-propagation
models: the free space model[17] and the two-ray ground model[29]. The power
of the signal at the receiver determines whether a frame can be received or not.
The physical layer uses two predefined constants Receive Threshold (RXThresh) and
Carrier-sense Threshold (CSThresh) to compare the power of an incoming signal Pk,
Depending on the value of Py, three cases are possible:

1. Py > RXThresh

In this case the signal can be received correctly. Then it keeps the medium busy
for the duration of the transmission. The frame is delivered to the MAC layer
which can receive it, or discard it if a collision has occurred. If the MAC layer
receives the frame correctly it updates its Network Allocation Vector. Then if
the frame is destined for the node, the MAC layer forwards it to the upper layers.

2. RXThresh > Py, > C'SThresh

In this case the signal can be received, but with transmission errors. The signal
keeps the busy state of the medium, and the PHY notifies the MAC for an
incorrect reception of a frame.

3. CSThresh > Py,

In this case the signal is ignored by the physical layer. This is a simplification at
the physical layer, because in reality the signal would contribute to the SINR at

2.5 Lookahead in Wireless Network Models 23

the receiver. However ns-2 does not accumulate the incoming signals to calculate
SINR, but uses the constants RXThresh and C'SThresh for this purpose. So
this signal is irrelevant to the physical model in ns-2.

Distributed Simulation The carrier-sense threshold C'SThresh determines the
value of a variable, relevant to distributed simulation — distC'ST (Distance
Carrier-sense Threshold). This is the maximum distance at which the signal from
a transmitting station has at least power of C'SThresh. In other words distC'ST is
the maximum distance at which other nodes in the network should be notified when
a particular node transmits. This property of the model can be used in distributed
simulation because it defines a range in which one node can affect other nodes. This
range is also called sensing range.

I assume that the nodes in ns-2 communicate only via frame exchange through the
wireless medium. This means that there are no direct calls of methods of one node
from another node. This assumption can hardly be proved due to the complexity of
the model, but it is very likely to be true because it is required for a correct simulation
design. Otherwise, a network in which the nodes can call methods or exchange messages
directly and not through the medium would not make sense. Based on this assumption
and the sensing range, the following statements can be used to distribute the model of
ns-2:

e If two nodes lie at a distance more than distC'ST (out of sensing range), they do
not affect each other and can be simulated in parallel without synchronisation.

e If two nodes lie within a sensing range they might affect each other and their
actions have to be synchronised.

2.5 Lookahead in Wireless Network Models

The simulation models, used in the context of this thesis are models of wireless
ad-hoc networks. They are based on the IEEE 802.11 standard using the Distributed
Coordination Function of the Data Link layer. In order to simulate these networks in
a distributed way the models have to be studied for the parallelism available in them.
This is essentially lookahead extraction. There are two types of lookaheads, that can
be extracted from these models: static and dynamic.

Static Lookahead Static lookahead is always constant, and does not depend on the
status of the simulation model. This kind of lookahead is usually determined by the
minimum possible time for a physical phenomenon. For instance, if a simulation is
modelling airports, a static lookahead can be the minimum time for an airplane to fly
to another airport and affect the model there. A similar phenomenon can be used in

24 2 FUNDAMENTAL KNOWLEDGE

computer networks. A static lookahead here is the time for a packet to “fly” from one
subnetwork to another. But since a packet affects another subnetwork starting from
its first byte, the lookahead is the time for this byte to travel through the network.
This is the network propagation delay. Signal propagation in wireless networks is the
propagation of radio waves, and therefore it has the speed of light. Since the distances
in ad-hoc wireless networks are very small (maximum 550m in the model of ns-2), this
propagation delay is also very small (1...1500ns). Network simulations with ns-2 run
in a magnitude of minutes of simulation time, and therefore this static lookahead from
propagation delay is very small.

Dynamic Lookahead Other sources of lookahead may have a dynamical nature.
These lookaheads depend on a current status of the model, and may change over time.
For instance, in the airports model, if the current weather conditions do not allow an
airplane to take off, it will arrive later at the destination and give a possibility for a
higher lookahead. These dynamic lookaheads require a synchronisation protocol, which
is aware that lookahead may increase and decrease during the simulation. In the case
of wireless networks, lookaheads can be extracted from the operation of the Medium
Access Control (MAC) layer, since it controls sending of packets and affecting other
parts of the network. The algorithm of the Distributed Coordination Function (DCF)
can be used for this purpose (see algorithm 2.2).

This algorithm shows that if another station is currently transmitting (NAV > 0)
the current station will not send to the medium. This allows to use the value of the NAV
as a lookahead. Since wireless transmissions take time in a magnitude of milliseconds,
the NAV can promise lookaheads of this range (usually [1...2ms], depending on the
packet size and the transmission rate). But if the medium is free a station transmits
immediately. In this case a source of lookahead are the inter-frame spaces. Their length
is in the microseconds range [2...50us], i.e. much smaller than lookahead, extracted
from the NAV.

The lookahead of one simulator depends on the lookaheads, extracted from all
network nodes, that it is simulating. Even if only one network node reports a
free medium and a lookahead in the range [2...50us] this small lookahead has to
be considered as a lookahead of the simulator. Since one simulator models many
network nodes, the probability that one of them provides a short lookahead is high.
The study [24] investigates lookaheads in wireless networks, and concludes that
optimisation techniques can increase the lookahead to [5...60us] in 90% of the lookahead
computations. This lookahead is far too small to achieve speedup in distributed
simulations. Therefore I am considering also upper network layers, specifically in the
context of this thesis, in order to achieve higher lookaheads.

These upper layers are the communication protocols, that are developed and tested
with ns-2 in the context of this thesis. The goal of these protocols is to guarantee

2.5 Lookahead in Wireless Network Models 25

timely delivery of packets in multi-hop wireless ad-hoc networks. But since the DCF
mechanism used there is contention-based, it does not give predictable transmission
times, and is not appropriate for real-time communications. Therefore, these upper
layers build an access mechanism similar to the Point Coordination Function (PCF)
over the DCF. In these scenario some network nodes take the role of a central
coordinator (cluster head), and other nodes take the role of a client station. The cluster
heads continuously poll the clients in order to give them access to the medium. A cluster
head sends a poll once per time interval, which is fixed in the range of [20...30ms]. A
client sends a packet, only when it receives an invitation from a cluster head. This
means that if the medium is free at the client side it can not send immediately, but
after receiving an invitation, which takes time at least for the transmission of one data
frame (usually [1..2ms]).

So, network models in the context of the thesis have larger lookaheads than standard
wireless networks. They can be in the range of [1...30ms|, and their behaviour can be
determined by an additional study. These lookaheads can make the models appropriate
for conservative distributed simulation. However, the lookaheads have a dynamic
nature, and require appropriate methods for dynamic lookahead extraction and use.

26

2 FUNDAMENTAL KNOWLEDGE

3 Related Work Study

This chapter discusses other works and efforts in the area of parallel/distributed
simulation of wireless ad-hoc networks. First it reveals the purposes of this related
work study. Then it discusses research projects, which address problems, similar to
this thesis. Finally it summarises ideas from the related work study that are helpful to
this thesis.

3.1 Purposes of the Study

One purpose of the related work study is to find other research projects, similar to this
thesis, that may contribute to it. The contribution is knowledge and experience gained
from these projects that can be helpful to the thesis. The contributions may have a
positive nature, i.e. an idea from another project that can be applied to the thesis.
But they may also have a negative nature, i.e. an idea or a method, used in another
project, that is not applicable in the context of this thesis.

Another purpose of the related work study is to obtain a base for a comparison of
the solution of the thesis with other similar efforts. This helps to evaluate the result
of the thesis.

3.2 Ideas from Other Research Projects

PDNS The Parallel and Distributed ns-2 (PDNS) is an extension to the ns-2
simulator for parallel and distributed simulation of wired networks|7]. It divides
a model of a network into models of subnetworks and assigns each subnet to a
separate logical process (LP). The LPs use a conservative (blocking) approach for
synchronisation, i.e. each LP executes only safe events and does not violate the local
causality constraint. This avoids the implementation of state saving in the existing
ns-2 code. PDNS introduces the notion of remote link in ns-2. This is a network
link that connects two subnets on different LPs. PDNS uses remote links to extract
lookahead from the model. The propagation delay of a network link is the time for
one bit to “travel” along the link. Therefore the propagation delay of a remote link
defines the minimum simulation time that has to pass, before a packet, sent from one
side of the link, affects the subnetwork on the other side. So the lookahead of an LP
is the minimum network propagation delay of all its outgoing remote links. PDNS
can be used together with a tool for automatic partition of the input network model
— Autopart[1]. Autopart transforms a description of a network model for ns-2 into a
description of a network model for PDNS. It uses graph partitioning algorithms|25, 26|
to partition the input network model. Autopart eliminates the need of partitioning by
hand and optimises the partition for best performance of PDNS. It is especially needed
and useful for large-scale network simulations.

28 3 RELATED WORK STUDY

Optimisation Parallel and Distributed simulations can usually be optimised by
using model specific knowledge. Ji et. al. have shown in [24] some properties of
wireless networks which can optimise the parallel/distributed execution of their models.
They discuss properties that help to increase the lookahead of a model in parallel and
distributed simulations. Lookahead can be extracted at the MAC layer by inspecting
the network allocation vector, the current inter-frame-space time, the value of the
backoff timer. All these values show a minimum time period in the future in which
a node will not transmit. Another source of lookahead is the duration of a current
incoming frame. Since the radio antennas are half-duplex i.e. can not transmit and
receive concurrently, a node will not transmit until it finishes the reception of a frame.

Ji et. al. use the network simulator GloMoSim|34] and explore its features to
extract lookahead at the physical layer. GloMoSim accumulates radio transmission
signals at the physical layer to calculate the signal-to-interference-plus-noise ratio. Ji
et. al. use the accumulated signals to calculate the earliest possible moment in future
time when a node can sense the medium as idle. Since idle medium is a requirement
for a transmission this time can also be used to compute lookahead.

Ji et. al. use parallel simulation and achieve a speedup of 5.8 using 1000 wireless
nodes on a 16-processor machine.

Statistical Accumulation Madnani and Szymanski present another method for
optimisation of distributed simulation of wireless networks[28|. They divide a network
model into geographical domains with rectangular shape. Each domain, together with
the nodes inside is assigned to a separate LP. Each LP computes its domain closure,
which is the area around its domain interesting for it. The domain closure contains
other nodes that might affect the nodes in the domain of an LP. The simulation
runs synchronously and continuously changes between two phases: simulation and
information exchange. During the simulation phase each LP simulates its domain up
to a specified simulation time. Then all LPs stop simulation and exchange information
about activities, happened in the completed phase. During simulation, each LP
simulates in detail the nodes in its own domain and statistically estimates the activities
of nodes in other domains, i.e. in its domain closure. These activities include packets,
send or received by the nodes in the domain closure. In the first iteration the LPs
assume no activities in the domain closure. In the next iterations the LPs estimate the
activities in the domain closure by the activities in previous iteration steps, acquired
during the information exchange phases. Of course this method does not guarantee
the same simulation results as a sequential simulation. It produces an estimation of
these results with an error that depends on the simulation model.

This method achieves a speedup of 14.7 with a model containing 900 simulation
nodes, executed on an IBM Netfinity cluster of 16 processors. The results from the
distributed simulation differ by about 4.3% from the results from the sequential one.

3.3 Contributions to the Thesis 29

These results are the values of interest, measured from the simulation model, i.e.
throughput, packet delays, packet drops.

Adaptive Simulation Bononi et al. present in [11] a technique for adaptive
optimisation of communication costs and load balancing in distributed simulation of
mobile ad-hoc networks. They use a federate approach where a group of wireless nodes
is assigned to each LP. The nodes exchange messages during simulation, which are
either internal (within the same LP), or external (to other LPs). Bononi et al. use
a simple migration policy of mobile nodes to reduce communication overhead among
the LPs. The simulation algorithm migrates nodes during simulation from one LP to
another trying to minimise the amount of communications among the LPs. It computes
the ratio of external to internal messages for each mobile node, related to each foreign
LP. The LP with a maximum ratio is a candidate for the next “home” of a mobile node.
The migration process considers also the load balancing among simulators. It tries to
keep the nodes in the simulated network uniformly distributed among the LPs.

In preliminary test simulation runs this method achieves a speedup of 1.5 with a
model of 5000 nodes running on 3 computers, connected by a Fast Ethernet network.

3.3 Contributions to the Thesis

PDNS The PDNS project shows that a parallel /distributed execution of the network
simulator ns-2 is possible. Special model-related changes are required to keep the
integrity of the model across the simulators. The idea for model partitioning using a
graph can be also adopted in this thesis. PDNS has also a technical contribution — it
is a ready implementation of a distributed ns-2.

However, the method used for lookahead extraction is not very promising for this
thesis. Wired links may cover long distances (e.g. international or transcontinental
links) and may have a relatively high propagation delays. Wireless ad-hoc networks on
the other hand cover relatively small areas and therefore have much smaller propagation
delays.

Optimisation Ji. et. al. show general properties of wireless networks at the data
link layer, that can be also used for lookahead extraction in this thesis. The suggested
properties of the physical layer model can not be used in this thesis. This is because
ns-2 has a less detailed simulation of the physical layer than GloMoSim, e.g. it does
not simulate accumulation of wireless signals.

Statistical Accumulation The method of statistical estimation of neighbouring
nodes is interesting for this thesis, because it gives a good speedup and a good
approximation of a sequential simulation. However, the quality of the approximation

30 3 RELATED WORK STUDY

strongly depends on the simulation model and the points of interest in it. If the interest
is a measure of average performance statistics of the network, this method might be
appropriate. However, the goal of simulations in the context of this thesis is to test
the behaviour of a distributed application or a protocol in a wireless network. So, this
method is less appropriate, because it introduces an artificial, statistically estimated
data into the network. In this way it breaks the semantics of the communication among
applications. For this reason, this method is not chosen in the thesis.

Adaptive Simulation The usage of the method for adaptive repartition and load
balancing depends on the used simulator. If the migration of mobile nodes from one
simulator to another one is a straightforward process, this method is applicable. Bononi
et al. represent mobile nodes by structures that store all state variables and can easily
be serialised and transfered to another simulation host. However, wireless nodes in
ns-2 are designed for a sequential simulation and consist of multiple objects, linked to
the simulator engine by a series of pointers. This makes the serialisation of a wireless
node in ns-2 a non trivial task, and therefore the method of adaptive node migration
is not chosen in this thesis.

4 Design of the Simulation System

This section explains the design of the thesis on an abstract level. It discusses
ideas for a solution and gives reasons for the taken design decisions. Section 4.1
describes the intentions of the design and the criteria for taking design decisions.
Section 4.2 motivates a fundamental design decision for choice of a type of distribution
in the distributed simulation system. After that, section 4.3 gives an abstract,
overall description of the chosen system design. Section 4.4 gives details about
the components of the distributed simulation system. It describes partitioning and
distributed execution of the simulation model. Section 4.5 describes a design idea
to ease the distribution of the simulation model. Finally section 4.6 estimates the
contributions of the design and its consequences for the thesis.

4.1 Design Purposes

The purpose of the design is to choose an overall structure of a distributed simulation
system and its components. At this step I will choose one of the possible ways to solve
the thesis task. The chosen method will try to satisfy the following criteria:

1. Optimal for this task and its specific requirements. The solution should use task
specific requirements, and information in the context of the thesis in order to
maximise the significance of the results. The thesis does not try to solve the
problem of distributed simulation of wireless networks in a general case. It is
concentrated on specific wireless networks (see section 2.5 for details about the
context of the thesis).

2. Straightforward technical implementation. Because of the relatively high
complexity of the task, I prefer straightforward methods than more complicated
ones. This aims to keep the task feasible and avoid an additional increase of its
complexity.

3. Independence of different system components. Different blocks of the system
should rely only on interfaces between them and should not depend on the
operation of other blocks. This gives a modular design and allows to change
modules of the system transparently from other modules.

Of course it might not be possible to optimise the solution in all directions, because
they might have a contrary nature. For example, the optimal solution does not always
have a straightforward implementation. I am going to choose a tradeoff in such cases.

32 4 DESIGN OF THE SIMULATION SYSTEM

4.2 Choice of Distribution Type

The first decision by the design of a distributed simulation system is to choose the type
(level) of distribution. This is a fundamental decision, that determines the design of the
system, and therefore it is taken first. Section 2.2 already described the decentralized
event level distribution. Here, I discuss several other distribution levels [15], and give
reasons for the choice in this work.

1. Application level

This is the most intuitive and trivial way to distribute a DES if the model contains
random variables. The sequential simulator is run on different computers with
the same model, but different sequences of random numbers. This method can be
used when independent replications are needed to obtain statistically significant
simulation results [14]. It is the most easiest and fastest way to distribute a
simulation. First, because no changes in the simulator are needed and second,
the different runs are absolutely independent from each other and require no
synchronisation. However, the goal of this work is to speedup a single simulation
run and this trivial distribution is not appropriate.

2. Subroutine level

At this level, simulation subroutines, that have supporting function, are
distributed to other computers. These include random number generation or
collection of statistics. Other supporting tasks appropriate in multiprocessor
environments are memory management or postprocessing of simulation results.
Due to the relatively small number of possible support subroutines in ns-2, this
level of distribution does not promise a significant speedup.

3. Component level

This distribution is on the software modules level. Different modules of a
simulation program are executed on different computers. In network simulation
this would mean that the model of each layer is executed on a separate simulator.
This approach is not appropriate in this work, because there are not many
network layers or other components that can be separated — it has a limited
scalability. Moreover, network layers exchange messages frequently which would
lead to a significant communication overhead among the simulators.

4. Event level - centralized

This level distributes the execution of single events to other computers. The
method is centralized — a master processor maintains the event list. It assigns
heavily weighted events with the same timestamp or close to each other to
be executed by the slave processors. This method makes use of independence

4.3 Overall Design 33

between events in the time domain, i.e. it uses concurrency of events to achieve
speedup. So, this method makes less use of independent events, than the
decentralized method, which also uses the space domain. Another motive against
this method is that it does not have a straightforward implementation in ns-2.
Ns-2 is by design a sequential simulator and does not provide primitives to execute
events on another hosts.

5. Event level - decentralised

This level divides the simulation model in space and time, and assigns each
portion to a separate processor. It promises a high speedup if the model has
many independent events in these two domains. However, this method requires
a synchronisation protocol to ensure the integrity of the simulation model. This
method of distribution was discussed in detail in section 2.2.

The decentralized event level distribution makes use of independent events in both
space and time domain, so it explores a better degree of the model’s parallelism than
the other levels. Therefore it promises a greater speedup. Its disadvantage is that it
is more complex than the others and requires distributed synchronisation protocols.
However, a lot of research and development is done in this field, and I rely to use
efforts and achievements of other researchers in this work. For these reasons I choose
the decentralized event level distribution in this thesis work.

4.3 Overall Design

After the level of distribution is fixed, the next step is to choose an overall design
of the distributed simulation system. Since this thesis task is an extension to the
network simulator ns-2, the overall system design should be similar to it. The input is
a description of a network model, like in ns-2, and the output is also a history of the
simulated network. The solution differs from ns-2 by the distributed execution of the
simulation model. The definition of the thesis task requires at least two basic blocks in
the system — modules for automatic partitioning and for distributed execution of the
model. The chosen level of distribution implies two other blocks for synchronisation and
exchange of messages among logical processes. An additional module for postprocessing
of simulation results completes the overall design of the system. Figure 4.1 illustrates
this design.

The figure shows the blocks of the system, together with interactions between them.
The input to the system, and its output are the same as the input and output of ns-2.
The system has some additional blocks, needed to accomplish the task for distributed
simulation. The block for model partitioning divides a sequential ns-2 model into
multiple partial models. Then the component for distributed execution runs the partial
models in parallel. This component uses the “Synchronisation” and “Message Exchange”

34 4 DESIGN OF THE SIMULATION SYSTEM

% Distributed Execution
Partial Models Set of Results

[X 2
Synchronisation) (Message Exchange

Figure 4.1: Overall system design

R

Model Partition Merge Results

Sequential Model (Input) Final Result (Output)

modules to ensure the correct execution of the model and its consistence. The module
for distributed execution, together with “Synchronisation” and “Message Exchange” is
the main part of the system. The product of the distributed execution is a set of
simulation results, corresponding to the different parts of the model. These results
are then merged to compose the final simulation result. This final result should be
the same as a result from ns-2 with the same input model, but it should be generated
faster.

4.4 Design of System Components

Following the overall design, this section gives details about the system components
and motivates their choice. It is concentrated on three components: “Model Partition”,
“Synchronisation”, and “Message Exchange”. The component “Distributed Execution”
has a general function to define the level of distribution, which was already discussed in
a previous section 4.2. It mainly consists of “Synchronisation” and “Message Exchange”.
The component “Merge Results” has a straightforward operation. It simply combines
and orders results from sub-models to form a history of a network, corresponding to
the whole input model.

4.4.1 Method for Model Partitioning

The goals of the partitioning are:

1. Divide the model of the network into roughly equal parts (spaces). These parts
are mapped to logical processes. Roughly equal means that the needed processing
time to simulate a network part is close to the time, needed for another network
part.

2. Minimise the exchange of synchronisation messages among the logical processes.

4.4 Design of System Components 35

Both goals are significant for speedup in distributed simulation. The first one aims at a
good balance of the model among the simulators. This means that the LPs will proceed
in time close to each other and have a small time difference. This is considered a good
characteristic of a distributed DES for both conservative and optimistic synchronisation
(see section 2.2). The second goal tries to achieve a lower synchronisation among the
logical processes. It means that they can operate independently for longer periods,
which increases the speedup, gained from distributed simulation.

The first step in the design of a component for topology partitioning is to choose the
unit of the partitioning. It is a structure that remains as a whole after the partitioning.
The instances (objects) of this structure can be assigned to different LPs to partition
the network. A reasonable decision by network partitioning is to choose a network node
as a partitioning unit. This is because a it is a relatively closed system. Many events
happen inside a node: exchange of packets among the network layers, scheduling of
timers, changes of the states of the network layers. On the other hand, relatively fewer
events happen outside a network node. These are primary send and receive packets
to/from the network. So, if the node is the partitioning unit, the messages, exchanged
among the LPs are the relatively rare compared to the events inside the LPs. There is
another reason to choose the network node as a partitioning unit. If each node in the
network requires an amount of processing time for its simulation, the load of each LP
can be estimated by the sum of processing times of all nodes in it. So, the partitioning
unit “node” contributes to both goals of the partitioning, and therefore I choose to
partition the network on the network nodes.

The next step in the design is to choose a method to partition the network into
groups of nodes. One idea is to split the network geographically using some geometrical
forms. Then the group of nodes that lie in each area is assigned to a logical process and
simulated separately. This method is easy to implement when the geometrical forms
are homogeneous. It is showed on figure 4.2a. The figure shows the area of a wireless
network, where the points are nodes. However, such separation might not consider
the structure of the network and have a low quality. The upper left corner contains
too many nodes, and the lower left too few. In order to consider the structure of the
network one might need different types of geometrical forms and of different size, as it
is shown on figure 4.2b. These geometrical forms consider the structure of the network,
but may increase the complexity of the solution.

Another idea is to represent the network as a graph and then partition it using
a graph partitioning algorithm. This method is intuitive, because a network can be
easily represented as a graph. The vertices correspond to the network nodes and the
edges correspond to the links among the nodes. The vertices may have a weight,
representing the processing time, that a network node needs for its simulation. The
edges may also have weights, which represent the amount of communications between
two network nodes. So, this method considers the structure of the network. A graph

36 4 DESIGN OF THE SIMULATION SYSTEM

o o o @
o o o . @ o o
[] @
@] ! o
([J 1 [J
o i o
°)
o | (]
@ (©)
e O o O
@ (] @ (©)
a) Geometrical partition — simple forms b) Geometrical partition — complex forms c) Graph partition

Figure 4.2: Network partitioning methods

partitioning algorithm can divide the graph into roughly equal parts and minimise the
sum of communications between partitions. So this method contributes to both goals
of graph partitioning, defined above. It is also relatively easy to implement because
the problem of graph partitioning is well known in the graph theory |25, 26]. There are
also studies that investigate graph partitioning algorithms for distributed simulations
[27].

So, the chosen method for network partitioning is the following. The network is
transformed to a graph, then the graph is partitioned and the partitioning is mapped
to the network. Each partition of the graph (network) is assigned to a separate logical
process.

The transformation from network to graph includes generation of vertices and edges
of the graph from the network topology. The vertices of the graph are the nodes in the
network. Since wireless networks do not have links, another property is used to create
the edges of the graph. Wireless networks have a broadcast nature, i.e. a packet on the
physical layer is sent to all the nodes in a sensing range. So, the sensing range of the
nodes is used to define logical links in the network and edges in the graph. This idea
is illustrated on figure 4.2c. It shows a graph that represents the wireless network on
figures 4.2 a and b. Two vertices are connected by an edge if the corresponding nodes
are within a sensing range, and can affect each other in a simulation. The edges that
are “cut” by the partition are marked by a dashed line.

4.4.2 Method for Synchronisation

After the network topology is properly partitioned, different parts of the model
should be executed in parallel and synchronised. This section explains the need of
synchronisation among parts of the model and motivates the chosen synchronisation
method.

4.4 Design of System Components 37

Need of Synchronisation If we think in network terms, synchronisation among the
different parts of a network is needed because:

1. The communication medium is common. This means that the medium access
among neighbouring parts of the network has to be synchronised to guarantee
correct simulation results.

2. There is inter-partition communication. The network was initially a whole
and it is quite possible that a source and a destination node of an existing
communication flow are now in different partitions. So, packets among different
network parts may be exchanged.

Actually the first argument is a superset of the second. In other words, if the access
to the medium among neighbouring parts is properly synchronised, the exchange of
packets among them will be also correct, because it occurs at a higher network layer.
So, the synchronisation of the medium access is necessary for correct simulation. If two
pairs of nodes, placed within a transmission range, try to communicate simultaneously
a collision should occur. If these two pairs were assigned to different LPs and the
medium access was not synchronised the collision would not occur and the simulation
would be wrong. Note that synchronisation is needed only if the partitions are close
to each other and can communicate. If two partitions are far away and can not sense
and disturb each other they can be simulated completely independent.

The need of synchronisation can be more precisely explained by the use of simulation
terms, especially the affect property. It is a feature of events but is also valid for nodes
in the network and for LPs. A node affects another node when an event in the first
node affects an event in the second one. An LP affects another LP, when a node in the
first one affects a node in the second one. But a node in ns-2 affects another node only
when it sends a packet, since the medium is the only common resource to the nodes
(as discussed in section 2.4). So, an LP affects another LP only when a node on the
border sends a packet i.e. when it sends a packet in the common part of the medium.

So, synchronisation of medium access in neighbouring parts of subnetworks is a
necessary and sufficient condition for a correct distributed simulation. Therefore
distributed simulation of wireless networks needs a synchronisation algorithm to ensure
a proper execution of simulation models.

Choice of Synchronisation Algorithm There are two general approaches to
synchronisation in event-level distributed simulation — Conservative and Optimistic.
Table 4.1 shows the criteria which motivate the choice in this thesis. The “V” sign
means that a method satisfies a criterion, and the “X” sign means it does not satisfy
it. Next, I discuss the criteria, listed in this table and explain why the conservative
method is more appropriate in this thesis.

38

4 DESIGN OF THE SIMULATION SYSTEM

| Feature \ Method | Conservative | Optimistic |
Expected speedup A% X
Straightforward implementation \Y X
Available support \Y X

Table 4.1: Conservative vs. optimistic synchronisation

e Expected Speedup

I estimate that optimistic synchronisation would have a higher speedup for
distributed simulation of general purpose wireless networks. The first reason is
that lookaheads, extracted from detailed models of wireless networks are small.
Efforts to extract lookahead from these models show that in a simulation with
1000 nodes around 90% of the widths of safe windows are in the range of [5...60us]
[24]. This simulation time is smaller than the real time for communication
between two LPs in a Fast Ethernet network. This means that LPs would
spent more real time to determine a safe window, than the length of of the
safe window itself in simulation time. Therefore if lookaheads of this size are
used with the standard Null-message conservative algorithm[12|, the advance in
simulation time might be slower that real time. This is not a very promising
expectation, because some sequential simulations in ns-2 already run several
magnitudes slower than real time (see section 1.2). Another reason for a higher
speedup of an optimistic method is that it may make use of a bigger part of
parallelism in the model. For example it is very likely that different parts of the
simulated network communicate relatively rare, compared to communications
within these subnetworks. Then an optimistic method might make use of this
parallelism and simulate independent parts of the network in parallel. Note
that a conservative synchronisation algorithm can not make use of this kind of
parallelism. If internetwork communications are much lower that intranetwork,
then a speedup is theoretically possible. But the extraction of this knowledge for
a conservative synchronisation requires a deep analysis on dependencies between
events which is hardly possible in a complicated model like ns-2.

However, the models that are used in the context of this thesis are not of general
purpose wireless networks. They use a protocol for real-time communication
which uses deterministic time slots to access the medium (see section 2.5 for
details). This means that every node sends packets and affects other nodes in
fixed time intervals. These intervals are in the range of [1...30ms], which allows
to extract much larger lookaheads than in the case of general wireless networks.
Another important feature of this protocol is that it is pro-active. This means
that it uses the communication medium even if there is no application data to
transmit. In these free time slots the wireless nodes exchange information, used

4.4 Design of System Components 39

to maintain a global knowledge for the topology of the network.

These properties of the model add some arguments, which give a better promise
from a conservative synchronisation method. First, the lookaheads in the model
are much higher than in the general case. This will result in a higher speedup from
a conservative method. The second reason is that the pro-active nature of the
communication protocol brakes the assumptions of an optimistic synchronisation
method. The applications in different subnetworks may still communicate
rarely than applications in the same subnetwork. But the underlying pro-active
communication protocol still accesses the medium periodically and independently
from the needs of the applications. This guarantees a need of periodical
synchronisation and limits the optimism of the model.

For these reasons I expect that a conservative synchronisation method will result
in a higher speedup than an optimistic one in the context of this thesis.

e Straightforward Implementation
This criterion shows which method is technically easier to implement.

The conservative method is closer to a sequential discrete-event simulation than
the optimistic one. This is because it schedules all events for the future and does
not break the local causality constraint in the simulators. However it requires
the computation and extraction of lookahead from the model, which makes it not
transparent to the model.

On the other hand, the optimistic method is well known in the area of
distributed computation and simulation as a very complex method. It
requires technically complicated operations for state saving, rollbacks, memory
management, maintaining multiple lists of events, messages and anti-messages,
buffering of I/O operations.

The computation and extraction of lookahead is more straightforward than the
implementation of all these components of an optimistic simulator. Therefore a
conservative method wins also by this criteria.

e Available Support

Another criterion in favour of conservative synchronisation is an available
middleware for conservative simulation — 1ibSynk[4]. LibSynk provides
basic services to execute distributed simulations. These include exchange of
messages, calculation of safe windows (given the lookahead of the model), time
ordered delivery of messages to the simulation executive. Another service is a
publisher/subscriber like interface to modify and receive modifications of shared
objects in a parallel /distributed simulation.

40 4 DESIGN OF THE SIMULATION SYSTEM

Libsynk has proved its applicability in other projects, including PDNS. It is used
there to achieve a conservative synchronisation. PDNS is also an example use of
1ibSynk in ns-2, which is an additional support for this thesis task.

The conservative method satisfies all criteria, seen so far, better than the optimistic
one. Therefore I choose a conservative synchronisation method in this thesis.

4.4.3 Method for Message Exchange

The last block of the overall system design, not yet described is the “Message Exchange”.
The task of this component is to deliver messages among the LPs. Remember that
logical processes correspond to physical processes in the real network, and a physical
process in the context of this thesis is a subnetwork. So, an LP sends a message
to another LP, when a subnetwork sends a packet to another subnetwork. Using
simulation terms, an LP sends a message to another LP when an event in the first LP
affects events in the other one. LPs exchange messages also to realise the distributed
synchronisation algorithm. These messages contain upper bounds of safe windows, and
other synchronisation information.

The component “Message Exchange” has to define a notification method and a
communication protocol, used in the distributed simulation system. The notification
method defines how a receiver LP handles incoming messages. The communication
protocol is a transport protocol, that is used to exchange messages among the LPs.
Next, I discuss the choice of a notification method and a communication protocol in
this thesis.

Notification Method Generally speaking, there are two methods for notification
in communication systems: asynchronous and synchronous. Asynchronous notification
occurs when the sender notifies the receiver, while the receiver is doing some unrelated
operations. This method is event based and is implemented in computer systems using
interrupts. The asynchronous nature comes from the fact that the receiver becomes a
message as soon as it arrives, and in a moment when it does not expect it. Synchronous
notification is synchronised with the operations of the receiver. Here, the receiver
becomes a message only when it requests (polls) to be notified about it. Synchronous
notification can be realised in different ways. One of them is to check for new messages
(poll) periodically. The alternative is to poll for new messages more frequently, i.e.
once per event processing loop, or via busy waiting. Table 4.2 lists these notification
methods together with some criteria, that determine my choice. Again the sign “V”
means that a method satisfies a criteria, and the sign “X” means that it does not satisfy
it. Next, I discuss the particular criteria and motivate the choice for a notification
method in this thesis.

4.4 Design of System Components 41

Feature \ Method Asynchronous Synchronous
periodical ‘ frequent polling

Low latency \Y X V

Implementation and Integration X A% \Y%

Available support X V V

Table 4.2: Synchronous vs. asynchronous notification methods

e Low Latency

This criteria shows whether the notification method delivers messages instantly,
or adds an additional delay to the network transmission time. The lower the
latency from the notification method, the better, because messages contain
information about other simulators. This information may be useful to increase
the parallelism and the speedup from a distributed simulation.

Asynchronous notification has a low latency, because it delivers messages as soon
as they arrive. Synchronous notification has also a low latency, but only in its
“busy waiting” variant, because of the frequent polling. Periodical polling might
delay the delivery of messages until the next poll, and therefore has a higher
latency.

e Implementation and Integration

Synchronous notification methods are easier to implement than asynchronous
ones. This is because asynchronous methods introduce racing conditions in
memory access. Access to common memory objects during the operation of a
process and during a message handler need to be synchronised.

The network simulator ns-2 is a sequential synchronous system. Therefore it does
not provide methods to avoid racing conditions in concurrent data access. So,
it is easier to integrate a synchronous notification method than an asynchronous
one.

e Available Support

LibSynk, a library for communication and synchronisation in distributed
applications provides a synchronous API for message exchange. It is convenient
to be used in this thesis for communication and synchronisation purposes. This
is another reason to choose a synchronous notification method in this thesis.

The synchronous notification method with frequent polling satisfies all these criteria.
Therefore I choose to use it in this thesis.

42 4 DESIGN OF THE SIMULATION SYSTEM

| Feature \ Protocol || TCP | UDP | XTP | RUDP |
Reliability V X V
Expected performance X \Y \AY%
Availability (API) VV | VV X
High level abstraction | VV X X

AR < <

Table 4.3: Choice of communication protocol

Communication protocol The final step in the design of the “Message Exchange”
component is to choose a communication protocol. This protocol should provide a
guaranteed ordered delivery of messages among LPs. This is a requirement of the
conservative synchronisation method. Other desirable features are high bandwidth
utilisation and low latency communication in a Fast Ethernet network. Such properties
would speedup the interactions among logical processes and reduce the running time
of a distributed simulation. Table 4.3 lists several reliable communication protocols
together with criteria for the choice in this work. The meaning of the sings “V” and
“X” is the same as in previous discussions. The sign “VV” means that a protocol
satisfies a criteria very well.

TCP and UDP are well known transport protocols, widely used in the Internet.
XTP (Xpress Transport Protocol) is a reliable high speed transport protocol, based
on [33|. It can operate over the network layer, or directly over the data link layer for
lower latency. RUDP (Reliable UDP) is a reliable transport protocol, based on the
RFC 980 and RFC 1151. It runs over UDP/IP, but supports reliable ordered delivery,
flow control and congestion control mechanisms, similar to TCP.

e Reliability

Reliability here means a guaranteed and ordered delivery of network packets.
This is the most important requirement to the communication protocol, because
the synchronisation algorithm relies on it to keep the integrity of the model. All
the protocols TCP, XTP and RUDP are reliable by design. The UDP protocol
is unreliable, i.e. packets may be dropped or delivered out of order. However a
switched Ethernet network provides only one path for packet delivery, so packets
can not be reordered. Ethernet has also almost zero error rate, so packets can
be corrupted only with a very low probability. But in order to guarantee a 100%
reliability, the application has to implement error detection and flow control
mechanisms on its own. The design and implementation of these mechanisms
in one communication protocol are a relatively complex task. Moreover they
deviate from the topic of this thesis. Therefore I prefer to use a ready solution
for a communication protocol, and to avoid a proprietary implementation of these
mechanisms.

4.4 Design of System Components 43

e Expected Performance

Performance here means high bandwidth utilisation and low latency in a Fast
Ethernet network. The XTP protocol wins in this criteria, because it is designed
for high-performance communications. It can operate directly over the data link
layer for a lower latency. I expect that RUDP and UDP have a lower latency than
TCP, because they have a simpler operation. The TCP, even though it is designed
for much slower networks, has a high bandwidth utilisation over error-free high
throughput links, used nowadays|32]. A disadvantage of TCP is that it introduces
latency to the communication. It uses a congestion control mechanism, that aims
fairness with other communication flows. Therefore TCP delays the sending of a
packet, if a congestion may occur. Another source of latency is the flow control
mechanism. Its goal is to send data only when a receiver is able to process it,
and not to overwhelm it. Therefore TCP implies a higher latency than the other
protocols. But if a higher latency is a cost for a fair network access among LPs
in a distributed simulation, it may finally result in a good overall performance.
This is because the simulators would evolve with a similar speed and keep a small
time difference.

e Availability

Availability is the possibility to use a communication protocol. TCP and UDP
are widely used and available in all modern operating systems. The XTP protocol
has a commercial implementation and therefore is not available for this thesis.
RUDP is defined in an RFC and does not have a widely-available implementation.

e High Level Abstraction

LibSynk [4] is a higher level interface to TCP than the standard socket interface.
It provides a publisher/subscriber interface to create distributed objects, to
update their state and to receive state updates from other simulators. The
underlying building of TCP connections, setting of TCP performance options
and maintenance of socket descriptors is hidden from the application programmer.
Moreover 1ibSynk provides the same programming interface for communication
both via shared memory, and via TCP. This allows to run the same simulation
executive in parallel or distributed simulation, by changing only an environment
variable.

TCP satisfies most of the above criteria. Its latency might result in a suboptimal
performance, but its availability and higher level abstraction make it attractive to
begin with. For these reasons I choose the communication protocol TCP for message
exchange in this thesis.

44 4 DESIGN OF THE SIMULATION SYSTEM

4.5 Design Idea: Replicated Simulation

This section describes an idea for a design of a distributed simulation. It first motivates
the need for the idea, then explains the idea itself, and finally analyses its contributions
to the thesis.

Motivation Management of distributed simulation has a big influence to its speedup.
It includes time synchronisation and exchange of messages among the simulators. If
the time spent in management work is too big, the efficiency of distributed simulation
can decrease, and the speedup can be even negative. This motivates me to find an
idea, or method to decrease management work during distributed simulation.

Idea Lets look at the partitioned graph of one wireless network (see figure 4.3). The
graph represents wireless nodes (the vertices), and dependencies between them (the
edges). Additionally, the closed regions around each partition show the total joint
sensing range of all nodes in the partition. This range determines all other network
nodes, that can affect nodes in the partition. For instance, node C' lies in the joint
sensing range of partition 1, and can affect the nodes A and B. In the same way
nodes A and B lie in the sensing range of partition 2, and can affect node C. For this
reason, simulator 1 has to be aware of node ', and inform simulator 2 each time when
node A or B send a packet in the network. Also, when node C sends a packet in the
network, simulator 1 should have some information about node C' in order to compute
the effects from this transmission on the nodes A and B. This requires that simulator
1 has some representation of node C', which allows it to compute its influence on the
local simulation. This representation has to be regularly updated with the true copy
of node C' at simulator 2, in order to achieve a correct simulation.

Now, let simulator 1 also maintain a full instance of node C, which is a copy of node
C' in simulator 2, and behaves in the same way in both simulators. Then, when node
C sends a packet, simulator 2 no longer needs to inform simulator 1 about it, because
simulator 1 has also evolved to this transmission via a local computation. In the same
way, simulator 2 can maintain instances of the nodes A and B. So, when they send
packets and affect nodes in partition 2, simulator 2 “knows” about this transmission
and need not to be informed.

So, the idea is to replicate the simulation of border nodes in all simulators, which
they can affect. The replication has to maintain an instance of a border node in all
these simulators. This instance has to be the same, and have the same behaviour
in all simulators in order to achieve a correct simulation. In this way the activities
that border nodes initiate (e.g. send a packet) do not need to be synchronised among
different simulators. This could reduce the synchronisation overhead in a distributed
simulation. Figure 4.4 represents this idea graphically.

4.5 Design Idea: Replicated Simulation

Partition 2

Partition 1

Figure 4.3: Partitioned graph with sensing ranges

Simulator 1 Simulator 2

E

Figure 4.4: Replicated simulation of border nodes

45

46 4 DESIGN OF THE SIMULATION SYSTEM

Since every node in the overlapping area is presented in both simulators, there is
no need to synchronise the activities of the nodes A, B, and C. However, packets
that come from a non-overlapping area to an overlapping area have to be synchronised.
These are packets sent in the directions D — A, E — B, and F — C. If these
packets are properly synchronised, the behaviour of the border nodes A, B, and C' will
be the same in both simulators. In order to prove this I consider the group of nodes
{A, B,C} as a finite automaton. The inputs to this automaton are packets, that come
from outside, i.e from a non-overlapping area. The states of this automaton are all
possible combinations of state variables, that represent these three nodes in the model.
The outputs of the automaton are packets, that come out of it over the logical links
A— D, B — FE, and C — F. If the initial states of this automaton are the same in
both simulators 1, and 2, and these two automatons receive the same input signals,
then their states, and outputs will be the same during the whole simulation. Therefore,
it is enough to synchronise packets on the input logical links (i.e. D — A, F — B,
and F' — () in order to achieve the same states and behaviour of border nodes.

Analysis In alate stage of the thesis project I realised that this idea actually does not
necessary reduce synchronisation overhead in wireless networks. The main aspect, that
is neglected by the idea is that wireless networks have a broadcast nature. This means
that even if node F' sends a packet to node H, node C' will also be affected. When
the method for replication of border nodes is used, this will result in an additional
synchronisation, which is not be needed in the case without replications. So, this idea
on the one hand decreases synchronisations in the border area, but on the other hand
increases synchronisations in the areas near the border. This means that it changes
the boundaries, where synchronisations occur, but no necessary decrease them.

This idea does not show promising results in the distributed simulations of wireless
networks. But it is possible that it can be applied to other kinds of distributed
simulations — wired networks for example. The mathematical proof of the idea for
replicated border simulations and a test for its applicability in other models can be an
interesting topic for further investigations.

Nevertheless, this idea has also a positive contribution to the thesis. Now the
interactions, that happen in the model, and need to be synchronised can be completely
computed by a simulator locally. This means that when a node sends a packet, and
this transmission has to be synchronised with another simulator, all destination nodes
are also available in the source simulator. Therefore the simulator can compute all
necessary parameters for a transmission locally using the ready and implemented
methods of the sequential simulation. These parameters are propagation delay and
reception power of the signal at the receiver side. The use of the implemented methods
in the sequential simulation has two advantages. Firstly, it is secure, i.e. it leaves
model-related computations to the sequential model, and avoids possible errors. And

4.6 Design Interpretation 47

secondly it makes the design of the distributed simulation simpler. Now, the distributed
simulation does not go into deep model-related details of the sequential model. The
disadvantage of replicated simulation is clear: it introduces redundant simulations and
computations for the border nodes. But since the border nodes in large network models
are a small part, this effect can be tolerated.

4.6 Design Interpretation

This final section of the design summarises its main contributions to the thesis in
form of advantages and disadvantages. Finally it estimates the feasibility of the
implementation, which is the following step in the thesis, based on the design.

Advantages

e Modular Overall Design

The designed parallel /distributed simulation system has a block design, and the
interfaces among the blocks are clearly defined. This allows to change/upgrade
a component of the system without the modification of the other ones. For
instance the component for message exchange can be changed transparently to
other components of the system. If the used communication protocol results in
a low performance, it is enough to develop a module for 1ibSynk, to use another
lower latency protocol.

e High Quality Partitions

The component for model partitioning uses graph partitioning techniques to
divide the initial model into equal parts. This method promises high quality
partitions at a reasonable cost. This is because the graph partitioning problem
is well known in the graph theory and implementations of such algorithms
exist[26, 25, 27, 5].

e Optimal Synchronisation Method

The design suggests a conservative synchronisation method in the distributed
simulation. It promises a better speedup in the context of this thesis, because
of timing properties of the modelled communication protocols. A conservative
synchronisation method is also easier to implement than an optimistic one,
moreover PDNS is an existing example for it.

e Abstraction from Communication Method

The decision for a communication method is to use the 1ibSynk middleware[4].
This is a communication and synchronisation layer for distributed applications.
LibSynk provides transparency from the underlying communication protocol, and

48 4 DESIGN OF THE SIMULATION SYSTEM

the resulting simulation executive can use both shared memory and a network
for communication. This allows to use the same simulator for both parallel and
distributed simulation.

e Interesting Design Idea

The design of this thesis introduced an idea for replicated computations in
distributed simulation in order to reduce synchronisation. Even though this
idea does not promise reduce of synchronisation in this thesis, it might be an
interesting topic for research in distributed simulation. Moreover, other research
work has shown that replicated computations can reduce synchronisation in
distributed systems|30].

Disadvantage

e Non-optimal communication performance

The design suggests TCP as a communication protocol, because of its availability
and ease to use. However, TCP introduces latencies that may result in a
suboptimal performance.

Feasibility of Implementation The design suggests reuse of other efforts
in this thesis. These are mainly graph partitioning algorithms and a
communication/synchronisation middleware. Graph partitioning algorithms have a
high complexity, because they use complex mathematical and combinatorial operations.
Their implementation would be a task for another master’s thesis. The synchronisation
algorithms are also complex, because of their distributed nature. In spite of the
complexity of these algorithms, the reuse of other efforts in this thesis keeps their
realisation feasible.

However, the implementation still has its challenges, which have more or less a
technical nature. One of them is to keep the integrity of a model by a distributed
execution of ns-2. This means to replace interactions between subnetworks in a
sequential simulation by interactions between simulators in a distributed simulation.
Another challenge is a method to use a dynamic lookahead in the simulation model,
for an optimal performance of the synchronisation algorithm. These questions will be
answered in the next section.

5 Implementation of the Simulation System

Following the design, described in the previous section 4, this section describes the
realization of the distributed simulation system. It starts with a description of the
implementation process in 5.1, and an overall view of the implementation in 5.2. Then,
section 5.3 describes in detail the operation of different blocks of the system. It is
mainly focused on the partitioning and distributed execution of the simulation model.
Finally section 5.4 summarises the achievements of the implementation and estimates
its contributions to the work.

5.1 Implementation Strategy

Section 4.3 already introduced the overall system design, and the basic blocks and
interfaces in the system. This section follows this design and suggests a strategy for its
implementation. The strategy is graphically represented on figure 5.1. It is to divide
the system into smaller subsystems, where each subsystem has one input interface and
one output interface. Each subsystem is then implemented separately and at the end
they are merged to construct the whole system.

The overall design suggests three basic blocks and four interfaces (see figure 5.1).
This implies three subsystems, each having one input and one output interface. This
implementation strategy gives a flexibility to change modules of the system, but also
a requirement to keep the interfaces between different blocks clearly defined.

The implementation strategy divides the work into three stages. The first is to
implement the partitioning of the input model, and to produce an input for the next
stage. This block aims to divide the model into equal parts and minimise the amount, of
communications in a distributed execution. The second stage is to realize a distributed
execution of the simulation model. It should use a synchronisation algorithm to keep
the integrity of the model, and produce the same results as a sequential simulation.
The distributed execution provides a simulation result for each sub-model. The final
stage of the work is to implement the module for merging partial results into a final
simulation result, corresponding to the input model. The next sections give an overview
of the implementation, and then a detailed description of each stage.

5.2 Implementation Overview

Figure 5.2 shows an overview of the implementation of the distributed simulation
system. The system has three parts, as suggested by the design: preprocessing
(model partitioning), processing (distributed simulation), and postprocessing (merge
of results). The main component “Distributed Simulation” is further divided in 2
parts: “Distributed Execution” and “Synchronisation and Message Exchange”. The
blocks for synchronisation and exchange of messages were suggested as separate ones

a0 5 IMPLEMENTATION OF THE SIMULATION SYSTEM

Stage 2

Stage 1 Stage 3

Distributed Execution

R

Partial Models

X

Set of Results

Model Partition

Merge Results

Synchronisation

Sequential Model (Input) Final Result (Output)

Message Exchange

Figure 5.1: Implementation strategy

by the design. However, the implementation merges them into a single one, because the
1ibSynk library provides a common API for both operations. LibSynk is a library for
synchronisation and message exchange in parallel /distributed application, which is also
used in this thesis. It provides timely ordered message exchange and time management
for synchronisation in distributed simulations[4].

Figure 5.2 shows the main components of the system, and the interactions between
them. The class Simulator is a part of ns-2, and it defines and configures the simulation
model. In this implementation it additionally initiates a partitioning of the model,
before its execution, and also a postprocessing of the results after the execution. To
partition the model, the Simulator uses the class GNetwork. Its task is to acquire
information about the model from ns-2, represent it as a graph and run a graph
partitioning algorithm using the Metis library[5]. GNetwork also activates all nodes
that are assigned to the current simulator, and deactivates other nodes in the model.
So, when the model is partitioned and only one part of it is active it is time to execute it.
Then the Simulator gives the control to the Scheduler until the end of the simulation.
The Scheduler controls the distributed execution of the model, by maintaining and
running local events, and receiving messages from other simulators. The components
Ns-2 Object represent structures that build the model in ns-2, e.g. network nodes,
network layers, timers. These objects receive the control from the scheduler, execute a
step in the simulation model, generate a history about it, and possibly send messages
to other simulators. They use the component CommunicationInterface to transmit
these messages. The Scheduler also uses this component in order to receive messages
from other simulators and to advance simulation time. The CommunicationInterface
is an interface to the 1ibSynk library. At the end of the simulation the Simulator uses
the block for merging of results to construct a single simulation result from multiple

5.3 Implementation of System Components

o1

Distributed Execution

Partition Model

Graph|Partitioning

Start Simulation

i

: Scheduler

Merge Results

: Ns-2 Object [__Track

. i . H .
_ GNetwork II | =-2imulator | _: Postprocessor
GNetwork [Simulator I Postprocessor

I_

1| Access

istory

: Metis-Library

Model Partitioning

—_
Execute Event

Time Advanceé\Receive Messages

/ Send Messages

: Simulation Result

Result Postprocessing

N\,

y

AN

/

I : CommunicationInterface I

Time Management

: LibSynk RTI

Synchronisation and Message Exchange

, Message Exchange

Figure 5.2: Implementation overview

partial ones.

5.3 Implementation of System Components

This section describes in detail the implementation of the different building blocks of
the system. It starts with the partitioning of the simulation model in 5.3.1. Then
section 5.3.2 describes the distributed simulation of the model. This is the main part
of this work, and also the main part of this section. Finally, section 5.3.3 describes
postprocessing of simulation results from the different sub-models, which completes the
description of the system.

5.3.1 Model Partition

The subsystem for model partitioning divides a sequential network model into multiple
sub-models, suitable for distributed simulation. As discussed in the previous section
4.4.1, the design of the system suggests to partition the model by the network nodes.
So, the input interface of this block is a description of a network model in the simulator
ns-2. The output is an assignment of each node in the network model to a network
partition. Network partition is a group of network nodes, that is considered as a logical
process (LP) in the distributed simulation, and is simulated by a separate simulator
on a separate processing unit. The used method for model partitioning, suggested by

52 5 IMPLEMENTATION OF THE SIMULATION SYSTEM

the design, is to partition the input network with a graph partitioning algorithm. This
method requires two steps:

1. Represent a wireless network in the model of ns-2 as a graph

2. Partition the graph using a graph partitioning algorithm

Graph Representation This step reads the network topology of ns-2 and creates
a graph G(V, F) from it. V = {v;|i = 1...|N|} is a set of vertices in the graph, which
correspond to nodes N = {n;|i = 1...|N|} in the network model. F = {¢;|i = 1...|E|}
are edges in the graph, that represent a possibility that one node affects another one in
a simulation. Two vertices vy and v; are connected by an edge ey; if the corresponding
nodes n; and n; can affect each other in a simulation. Network nodes n; and n; can
affect each other in a simulation if they:

1. Use the same wireless channel

2. Lie within a sensing range (see section 2.4 for more details).

This means that if n; can affect n;, then n; can also affect nj, and therefore the graph
G(V, E) is undirected.

The network simulator ns-2 maintains an internal list of all network nodes. This list
has a memory management function and does not show the connections between nodes
in a wireless network. The set of vertices V' is read from this list. The set of edges F
is determined by inspecting each network node and defining its neighbour nodes, using
the rules above.

Graph Partitioning The graph partitioning problem is well-known in the graph
theory[25]. It is formally defined as follows. Given a graph G(V, FE), with set of
vertices V', and with set of edges F, partition V' into k subsets Vi, V4, ..., Vi such that:

L.VinV, =0 |Vi#j
2, Uf=1 Vi=V

_ v
3. Vil =4
4. Number of edges, connecting vertices in different subsets is minimal

This means to divide a graph with || number of vertices into k subgraphs, such that
they do not overlap, and their union forms the initial graph. The other two conditions
require that the number of vertices in the different subgraphs are equal, and the number
of edges between subgraphs is minimal.

5.3 Implementation of System Components 53

There are lots of different methods for graph partitioning, known in the graph
theory: geometrical, combinatorial, spectral, multilevel. The study [27] makes an
overview of different techniques and compares them quantitatively. It suggests that a
combination of multilevel and combinatorial method, called Multilevel k-way is suitable
for graph partitioning in scientific parallel/distributed simulations. It produces high
quality partitions, at a lower cost, compared to other partitioning methods.

The Multilevel k-way partitioning algorithm operates in three phases. First it
coarsens the input graph, i.e. it reduces its size by combining vertices together, and
accumulating information about vertices and edges. Then it partitions the coarsened
graph using a multilevel bisection algorithm|25|. The final phase of the algorithm is
a refinement process, which maps the partitioning of the small graph to the initial
graph. In this final phase the algorithm uses combinatorial optimisation criteria to
maximise the quality of the partitioning. The Multilevel k-way partitioning algorithm
is described in detail in [26].

The Metis library [5] implements a Multilevel k-way partitioning algorithm, and
I am using it in this thesis. It uses an optimisation criterion for the partitioning,
especially suited for parallel computing. The criterion is to minimise the total
communication volume totalv between processors. It can be described as follows. Let
the initially partitioned graph be G(FE,V), and let the set V;, C V contains all border
vertices, i.e. all vertices that have an edge to another partition. For each border
vertex v € V,, the array Nadj[v] contains the number of different partitions, which
v is connected to. Each border vertex v € V, has also a weight w,, which describes
the amount of communications, needed to synchronise the sate of the vertex v with
another processor. Then the total communication volume is defined as:

totalv = Z w, * Nadj[v]

veV)

The Multilevel k-way partitioning algorithm tries to minimise fotalv by using
a combinatorial scheme for moving vertices from one partition to another. This
measure of a partitioning reflects the amount of communications, used in a distributed
simulation because it counts the number of connections to external partitions. This
is different from counting the number of edges to external vertices, because a border
vertex may have multiple external edges, but still less connections to external partitions.
Connections to external partitions contribute to the amount of communications,
because they represent information flow between different processors. This idea is
illustrated on figure 5.3. Vertex number 5 has two external edges, but they are to the
same external partition. So, even though the graph contains two model-related paths
from partition 2 to partition 1, information about the state of vertex 5 needs to be
transmitted over a single communication path between these partitions. Therefore this
partitioning objective reflects the communication pattern in a distributed simulation.

54 5 IMPLEMENTATION OF THE SIMULATION SYSTEM

7

Partition 2

|
|
Partition 1 :

Figure 5.3: Graph partitioning objective

The weights of the vertices have to be determined from the simulation model. The
weight w, of each vertex v is determined by the weight of the corresponding node:
w, = w,. In this thesis the distributed execution is done with copies of border nodes,
and synchronisation occurs when a border node receives a packet. So, the amount of
communications, which a node introduces in a distributed simulation depends on the
amount of data it receives, i.e. the data that its neighbours send in the network. And
since the wireless medium has a broadcast nature, all data has to be taken into account,
and not only packets, destined to this node. For example, in figure 5.3, if node 6 sends
a packet to 7 or 8, then node 5 is also affected. Therefore all the data that node 6
sends in the network has to be taken into account, by computing the weight of node
5. Now, let the amount of data that a node ¢ sends in the network be D;, and the
neighbours of a node n be the nodes in V,,. Then the weight w,, of node n is the sum
of data amounts that its neighbours send in the network:

1€V

The simulation engine can hardly determine the amount of data D, for each node
before the simulation, and therefore it estimates it. I consider the network as a group
of logical links between network nodes and assume that all logical links are utilised
with an equal amount of data. Therefore I use

D;=1

for each data link. For example, the weight of node 5 on figure 5.3, based on
amounts of data D;, is given by the expression:

ws = D3y + Dy + Dg + D7 =4

Example graph partitions, obtained by the Multilevel k-way partitioning algorithm
and these weight settings are shown on figures 5.4 and 5.5. The first figure shows a

5.3 Implementation of System Components 95

a) Simulator 1 b) Simulator 2

Figure 5.5: Graph parts for two simulators

partition of a graph, and the second one shows parts of the graph, that are dedicated
to two different simulators. Note that the method for copies of border nodes is used
here, and therefore each simulator simulates also the border nodes of the other one.

5.3.2 Distributed Execution

The realization of a distributed execution is the second stage of the implementation,
and here I explain it in detail. First I follow the design and implement the idea
for multiple instances of border nodes. Then I extend the overview of the module for
distributed simulation, given in section 5.2. I describe the algorithm of the scheduler for
a conservative synchronisation, and explain basic operations in distributed simulation
— sending and receiving of messages and advancing simulation time. Finally I give
some remarks on lookahead extraction and repeatability of distributed simulations.

Instances of Border Nodes FEach logical process runs all nodes in its own partition,
and also all neighbouring nodes from other partitions. This means that the nodes on the
border have multiple instances in different simulators. The requirement for a correct
simulation is to achieve the same behaviour of all instances of the same border node

26 5 IMPLEMENTATION OF THE SIMULATION SYSTEM

in all simulators. In order to synchronise the behaviour of all instances of a network
node, I consider it as a finite automaton. The input signals of this automaton are
packets, that the node receives from the network. The outputs of the automaton are
packets that the node sends in the network. Since the model of ns-2 is deterministic
and repeatable one, the automatons (instances of nodes) can have an equal initial state.
So, if their input signals and their stochastic behaviour are synchronised, they will have
the same behaviour and produce the same outputs.

So, when a border node receives a packet in one logical process, the simulator sends
messages to all other LPs, that maintain an instance of the same border node. Note
that this synchronisation is not always necessary, when the sender is also a border
node. But there are special cases, which require this redundancy. These will be shown
in the experimental part of the work (section 6.3.1).

Since the model of ns-2 contains random numbers, the stochastic behaviour of
multiple instances of the same network node should be also synchronised. For example
network nodes in ns-2 use random variables to model a probability for transmission
errors. Then, if one instance of a node does not receive a packet because of a
transmission error, other instances should also not receive it in order to achieve the same
behaviour. The ns-2 implementation uses a single random number generator (RNG)
for all random variables in the entire model. In order to synchronise the stochastic
behaviour of multiple instances of border nodes I introduce a separate RNG for each
node. Then I initialise the RNGs of multiple instances of the same node with the same
seed, so that they produce equal random number streams.

Another issue that has to be taken into account is the generation of a history of the
network from the model. Since multiple instances of the same node execute the same
events, there is redundant information at the end. To avoid redundancy I turn off the
generation of history on the copies of border nodes. Now only one instance of a border
node generates history — this is the instance on the LP which the node is originally
assigned to from the partitioning.

Scheduling Algorithm The following discussion focuses on the distributed
execution of the simulation model. Section 2.1 illustrated the algorithm of a sequential
discrete-event simulator. The algorithm of a distributed DES with a conservative
synchronisation has an additional component for handling messages and processing
events in time-stamp order. Here, I describe the algorithm of the conservative scheduler,
used in this thesis. It is adopted from PDNS[7], which is also a conservative distributed
simulator, using 1ibSynk|[4].

The scheduler, used for a distributed simulation is implemented in the class
FederateScheduler, which inherits the class Scheduler in ns-2. Algorithm 5.1 shows
the main working cycle of the FederateScheduler. At the beginning it takes the
next earliest event e and requests to advance its time up to the time of e. If

5.3 Implementation of System Components o7

there are no events in the queue, the scheduler requests to advance its time up to
last_event, which is a preconfigured large time for the end of simulation. The
operation Request Time Advance is implemented by the CommunicationInterface
and 1ibSynk, and will be described in detail later. After this operation the control
returns back to the scheduler, which receives an allowance to increase its time to T. If
T is equal to last_event, this means that there are no more events for this simulator
in the system and it can stop. Otherwise the simulator continues to execute events.
However the granted time T is not necessary equal to the time of event e and can be
smaller. This is because during the operation of time advance it is possible that the
communication middleware delivers new messages and inserts events in the queue before
e. But after giving a time advance grant, the communication middleware guarantees
that there is at least one event that can be processed. Therefore, after this operation
the scheduler takes again the next earliest event e’, and executes it. It is possible that
the event e’ affects parts of the model, assigned to other simulators in the system.
In these cases it sends them a message to inform them about the change. For this
purpose it uses the operation Send Message of the communication middleware. After
the control comes back to the scheduler it continues with the next event in the list.

Next, I explain the operations Send Message, Request Time Advance and
Receive Message in detail.

Send Message Figure 5.6 shows a diagram of a simulator, sending a message
to another simulator. First FederateScheduler executes an event, by calling its
Handler. If this event is at the lowest network layer it may send a network packet
to the WirelessChannel. This is a class that models the radio channel in ns-2,
and basically transfers network packets between nodes. I have extended it to the
WirelessChannelFed, which takes into account that some nodes are simulated on
other hosts and generates messages for them from the ns-2 packets. However, network
packets in ns-2 are not represented as sequences of bytes, but are complex structures
with pointers. Therefore the WirelessChannelFed needs to transform ns-2 packets
into sequences of bytes before it that can send them through a real network. For this
reason it uses the class SerialPacket to transform ns-2 packets into serial messages
and reverse.

After the ns-2 packet is transformed into a sequence of bytes the
WirelessChannelFed passes it to the CommunicationInterface. It uses the 1ibSynk
middleware and updates the attributes of a distributed object. The middleware then
decides to which other simulators to send the packet based on a publisher/subscriber
information about the distributed object. The distributed object is a part of wireless
medium, situated in the overlapping area between two or more simulators. All
simulators that access this part of the wireless medium declare to 1ibSynk their
intention to modify it (publish information). They also state a wish to receive

o8 5 IMPLEMENTATION OF THE SIMULATION SYSTEM

Algorithm 5.1 Conservative synchronisation algorithm

Simulation start

simulation stoped

simulation not stoped

R S

(e = Earliest event)

e does not exist e exists

O<—

(Request Time Advance (Iast_event)) (Request Time Advance (e))

v

(Receive Time Grant T)

T >= last event

N

T < last_event
A4
(e' = Earliest event)

——

Execute event e'

,q“ Stop simulation'
7

l Simulation end

5.3 Implementation of System Components 59

| : FederateScheduler |

handle() : void
| : Handlerl

l send() : void

| :WireIessChanneIFedI I : SeriaIPacketl
— ——

Serialize() : void

—

1 send_packet() : void

I : TimeTranslator

| : CommunicationlnterfaceBRTII

—_—
Translate()

l UpdateAttributes()

| : DistributedObject |

Figure 5.6: Operation Send Message

modifications from other simulators (subscribe for it). In this way the 1ibSynk
middleware has the knowledge to deliver update messages to interested simulators.

Advance Time and Receive Messages These two operations are combined
together, because a conservative synchronisation algorithm advances simulation time
to a future moment only when it has received all messages until that moment in time.
In this implementation the 1ibSynk library controls the timely-ordered flow of messages
and determines up to what time a simulator can advance its local clock. Figure 5.7
shows a process of time advance and reception of messages.

When the scheduler needs to advance simulation time in order to execute a future
local event, it has to make sure that no messages will arrive until that time. So,
it gives the control to CommunicationInterface, which tries to advance simulation
time, using the primitives of 1ibSynk. It first declares a request for time advance,
and then continuously polls and waits for a time advance grant. If the middleware
knows from a previous computation of safe windows that the requested time advance
is allowed, it returns immediately and gives an advance grant. But if the requested
time advance is not in the safe window, 1ibSynk initiates a new computation of

60 5 IMPLEMENTATION OF THE SIMULATION SYSTEM

safe windows. After this operation completes, 1ibSynk delivers new messages at
the next poll via the method ReflectAttributeValues (). This is a callback
function of the CommunicationInterface. It receives a message, and then calls the
WirelessChannelFed to generate ns-2 network packets from it and insert them in the
local event queue. Finally, after delivering all possible messages until a moment in
the future, 1ibSynk grants a time advance to the CommunicationInterface, which
forwards the grant to the scheduler.

The 1ibSynk middleware uses a reduction based algorithm, and uses conditional
information to compute safe windows. Initially each simulator sets its safe window to
infinity. Then it conditionally guarantees that it will not send any messages until the
time:

Teona = Time(FEarliest Event) + Lookahead

This means that a simulator will not send any messages, with timestamp less
than T,.,.q, under the condition that it does not receive any new messages until
the time Time(FarliestEvent). This is because there are no events before the
time of the earliest event. The middleware uses conditional guarantees from all
simulators, information about the connections between them, possible message flows,
and information about transient messages to compute the safe windows. Transient
messages are messages that are sent, but not yet received at their destination. They
are an issue by computing safe windows in distributed simulation[18]. The 1ibSynk
middleware reduces the safe windows until it is not possible that a simulator in the
system receives a message within its safe window. Then it gives time advance grant
until the end of the safe window of each simulator.

Lookahead Extraction Lookahead in a distributed simulation depends on the
model, and has to be eztracted from it, using model specific knowledge. An intuitive
source of lookahead in a network simulation is the network propagation delay. This is
the time that one bit from the signal “travels” through the medium. Therefore it is
guaranteed that an event in one node can not affect an event in another node, before
a network propagation time in the future. So, it can be used as a constant lookahead.
However, propagation delays in wireless networks are in the range [1...1500ns], which
is too short to promise large safe windows and a good speedup.

Other properties of the model also exist, that can be used to extract lookahead.
These are for example properties on the data link layer in a wireless network. Another
sources of lookahead are properties of the real-time communication protocol, used in the
context of the thesis. Since it uses a time division access to the medium it is possible
to predict an earliest moment in future in which a node may send in the medium.
Using these two sources of lookahead, it is possible to determine larger lookaheads in
the range [1...30ms]. However, these are dynamic lookaheads, i.e. they are based on
a current state of the model and change as the model evolves in time. Using these

5.3 Implementation of System Components 61

: FederateScheduIerl | : CommunicationIinterfaceBRTI | : LibSynk RTI| | : WirelessChannelFed
\ \

\
: request_time_advance() : void | \
1: RequestTimeAdvance() : void |

: Poll() : void

:|ReflectAttributeValues() : void

: Serial_To_Events() : void

schedule() : void

[— B) IS— .,

Figure 5.7: Operation Receive Message and Advance Time

62 5 IMPLEMENTATION OF THE SIMULATION SYSTEM

lookaheads requires a method for dynamically changing lookahead in the distributed
simulation.

But the used interface to the 1ibSynk library in its current version 1.13 does not
provide primitives to dynamically change lookahead during simulation. Therefore I
can not use these large lookaheads in the current implementation. An extension to the
1ibSynk library is needed in order to use the larger but dynamic lookaheads available
in the simulation model. This extension remains a problem of future investigations.

Repeatability Repeatability of distributed simulations is another point, that has to
be taken into account by the implementation. Like every other scientific experiment,
distributed simulations also have to be repeatable, and produce the same results in
multiple executions. A possibility for non-repeatable simulations is introduced by
messages with the same timestamp. In order to be repeatable a simulation has to
guarantee that it executes local events in the same order in each run. The order of
execution of events with different timestamps is fixed by the simulation algorithm, but
the order of events with equal timestamp is not. In sequential simulations, this problem
can be easily solved by executing concurrent events in a FIFO manner. However, this
is not a solution in a distributed simulation, because messages are transmitted and
delayed through a network. Consider that two simulators send two messages with the
same timestamp to a third one. In this case a FIFO ordering of the messages by the
third simulator is not appropriate. This is because in different executions these two
messages may be delayed different amounts of time through the network, and may be
received in a different order.

There are known techniques for breaking ties in distributed simulations, e.g. hidden
time stamp fields, priority numbers, or receiver specified ordering[18]. In this thesis, I
am using the third one, by additionally considering the IDs of the simulators by the
order of events in a local queue. It guarantees that distributed simulations with the
same number of simulators produce the same results from one run to another. The
scheduler now uses a composite timestamp, created from the time of an event, and
the ID of a simulator, which has originated this event. If two events have the same
timestamp, then the event from the simulator with a smaller ID is processed first.
If these two events are received from the same simulator, then they are processed in
a FIFO order. The FIFO ordering can not result in ambiguities here, because the
communication protocol TCP provides ordered delivery of messages. This guarantees
that if two messages come from the same simulator, and have the same timestamp, they
will be processed in the order which they were send. And since the model executes
in a deterministic way, a simulator will always produce messages in the same order,
provided that it processes input messages also in a deterministic way.

The interface to the 1ibSynk library, used in this thesis, provides possibility to
operate only with timestamps, containing a single field, which is the time from the

5.3 Implementation of System Components 63

model. The additional ordering of simultaneous events by simulator IDs has to be
implemented on top of 1ibSynk. In order to correctly do this, the Scheduler has
to know all available events with a next timestamp 7, = T,,..s: before starting
to process the first one. I implement this feature in the CommunicationInterface
transparently from the Scheduler, and from 1ibSynk in the following way. When
the scheduler requests a time advance up to time 7., the CommunicationInterface
requests from 1ibSynk a time advance grant of 7, + At (At is a small time). When
it receives this grant it means that all messages until time 7, + At are known to the
Scheduler, and it has ordered them in its local queue based on their sender ID. Now
the CommunicationInterface grants the time 7, to the Scheduler, and it can safely
start to process the first event in the row of events with at time T,.

Note that when the CommunicationInterface requests a time 7, + At from 1ibSynk
it conditionally guarantees that the simulator will not send any messages with a
timestamp less than T, + At + Lookahead. But it is possible that an event at time
T. generates a message with timestamp 7. + Lookahead which will not be accepted
by the synchronisation mechanism. Therefore the CommunicationInterface decreases
the lookahead at Lookahead — At in order to ensure the correct operation of 1ibSynk.

This measure needs a further refinement, when it is applied in practice, because
of floating point roundoff errors. This is because the model computes the time of the
next event by:

Trest = 1. + Lookahead

and the 1ibSynk computes a conditional guarantee for no messages, sent until the
time:

T,

g

warantee = (T + At) + (Lookahead — At)

It is possible that T),cqt < Tyuarantee due to floating roundoff errors. Therefore, the
CommunicationInterface further decreases the lookahead at Lookahead — 2 x At. The
choice for At = 1le™'? is sufficiently big to compensate roundoff errors and guarantee
that Thezt > Tyuarantee- On the other hand it is sufficiently small (1 picosecond), and
does not have a significant impact on the performance of distributed simulation.

5.3.3 Postprocessing of Results

After the distributed simulation has finished, each simulator provides history of the
sub-model which it has simulated. It is in a form of a text file, where each line
contains information about an event, e.g. “a node has sent a packet at time 77",
or “a node received a packet at time 75”. The events, written in each are sorted by
their timestamps.

Then, the task of the module for postprocessing is just to merge these history files
into a single history file of the whole model. It uses the timestamps of the events to

64 5 IMPLEMENTATION OF THE SIMULATION SYSTEM

order them in the final result. Events that have the same timestamp, but are executed
on different simulators are further ordered by their simulator ID.

5.4 Evaluation of the Implementation

This section concludes the description of the implementation of this thesis. First, I
summarise the implementation and discuss its main advantages and disadvantages.
Then, I conclude this section by an evaluation of the implementation, considering the
goal of the thesis to achieve a positive speedup.

Implementation Summary The implementation of the parallel/distributed
simulation system for wireless networks is an extension to the network simulator ns-2|9).
It has added the following new components:

e Network graph

This component is responsible to represent the network model of ns-2 as a graph
and partition it for the distributed simulation. It provides an interface to the
Metis libraryl5|.

e Simulator scheduler

This is a simulator scheduler, that is aware of the parallel /distributed simulation,
and uses a conservative algorithm to control its execution.

e Communication interface

This module provides services to exchange messages and synchronise the
execution of the model with other simulators in the system. It uses the 1ibSynk
library which implements most of these services|4].

In order to reconstruct the ns-2 simulator from a sequential to a distributed one, some of
its components have been modified. These modifications have a management function,
and do not change the semantics of the model. They are mainly in the following
components:

o Wireless network

These modifications are needed to keep the integrity of the network model across
multiple simulators. At the points where the network is “cut” from the separation,
the interactions between model components have to be replaced by exchange of
messages among the simulators.

5.4 Evaluation of the Implementation 65

e Random number generation

These modifications allow the replicated simulation of border nodes. They
guarantee that multiple instances of border nodes have the same stochastic
behaviour.

e Time module

This is a structure that represents time in the simulation system. It is needed to
ensure repeatability of distributed simulations.

The own implementation amounts around 4000, lines of code in C++ and OTcl. Three
thirds from them are implementation of new components, and the rest are modifications
of the ns-2 to manage the parallel /distributed simulation.

Advantages

e Modular Implementation

The implementation followed the design and has also a modular nature. This
allows to change some parts of the system without affecting other implementation.
For example, the synchronisation algorithm can be replaced with another one
which extracts higher lookaheads from the model and promises a higher speedup.
This can be done without changing the partitioning, the algorithm of the
scheduler, the operations for sending and receiving messages.

e Repeatability

The implementation introduces composite timestamps to guarantee that
distributed simulations are repeatable. The used method for repeatability is easy
to implement and has a negligible cost. Composite timestamps were introduced
in ns-2 without modifications of the simulation models, using object-oriented
programming techniques.

Disadvantages

e Low-representative Graph Parameters

The graph that represents the ns-2 network does not reflect the amount of
computations that are needed to simulate a network node. The used models in
the context of the thesis use communication protocols, where nodes have different
roles and need different amount of processing power respectively. The roles of
the network nodes are determined at run-time, and therefore are not considered
by the partitioning, which occurs before simulation. If the amount of processing
power was considered by the partitioning this would result in a better balance.

66

5 IMPLEMENTATION OF THE SIMULATION SYSTEM

An alternative approach would be to start a sequential simulation for awhile, let
the nodes determine their roles, then partition the simulation and continue it in
a distributed way. This approach would also lead to a better estimation of the
communication patterns between network nodes. This approach would also be a
next step in moving towards mobility in distributed simulations.

Small Lookaheads

The lookaheads, that are used for distributed simulation imply very short safe
windows and does not promise a parallelism. Even though the model provides
knowledge to extract greater lookaheads, they can not be used at the current
stage with the 1ibSynk middleware.

Evaluation The solution of this thesis task provides a parallel and distributed
simulator for wireless ad-hoc networks. I have solved the task to transform the
simulator ns-2 from a sequential one to a parallel/distributed one. A distributed
simulation now produces the same results as a sequential one. The following problems
are still left to be solved in order to achieve speedup in simulation of wireless networks:

e Dynamic Lookahead

A method for dynamically changing the lookahead in distributed simulation is
needed in order to achieve a positive speedup. This step can be implemented as
a part of the LibSynk library [4], which requires a very good understanding of
its operation.

Dynamic Repartitioning

Dynamic repartitioning of the simulation model can enable mobility in distributed
simulations of wireless networks. The main challenge here is the migration of
nodes in the simulation model from one simulator to another.

A solution of these two problems will lead to a fully functional parallel and distributed
simulator for mobile ad-hoc networks.

6 Experimental Evaluation

This chapter describes experiments, that verify and evaluate the implemented parallel
and distributed simulation system. First, in 6.1 it presents the goals of the experimental
study and expectations for the results, based on the design and the implementation.
Then, section 6.2 describes the strategy for realisation of the experiments, and
the structure of their description. Sections 6.3 and 6.4 describe the realisation of
the experiments and present the results. Section 6.3 groups experiments that test
empirically the correct operation of the distributed simulation system. Section 6.4
presents experiments that measure the speedup, gained from parallel simulation, and
estimate the possible speedup from parallel and distributed simulation. And finally
section 6.5 summarises the results of the experimental study, and evaluates their
contributions to achieve its goals. It concludes this section with directions for further
experimental studies.

6.1 Goals and Expectations of Experiments

Goals The experimental study has the following goals:

1. Prove correct operation

The most important requirement to any computer program is that it operates as it
is thought to. Therefore, the first goal of the experiments is to prove empirically
the correct operation of the distributed simulation system, developed in this
thesis. The proof here is only empirical, because a distributed simulation system
is a highly complex system and it can be hardly analytically tested.

2. Show dependency from lookahead

A significant drawback of the implementation of this thesis is the use of short
lookaheads, which do not promise a positive speedup. Therefore, the second goal
of the experimental study is to show that if the lookahead was higher, the speedup
would be positive.

Expectations Based on the design and the implementation of this thesis and on
preliminary test simulation runs, I can make the following expectations for the results
from the experiments:

1. Distributed simulations operate correctly

Distributed simulation does not introduce any additional model-related
computations, because of the redundant simulation of border nodes. It allows to
use methods of the sequential simulator to compute interactions between objects

68 6 EXPERIMENTAL EVALUATION

in a distributed simulator. For example when a node sends a packet which needs
to be synchronised, all nodes that may receive the packet are available in the
same simulator. Then the model-related parameters of the transmission like
reception power, propagation delay are computed locally, using the methods of
the sequential simulator. This results in scheduling of one event for each receiver
node in a sensing range. And if one of the receiver nodes is a border node, the
corresponding event has just to be transmitted through a network and scheduled
remotely. Therefore, I expect that distributed simulation does not change the
semantics of the model in any way, and it produces the same results.

Another source of confidence is the use of the 1ibSynk library for message
exchange and synchronisation|4]. It has proved its correctness in other projects,
and provides a correct interface for these technical aspects of parallel and
distributed simulation.

2. Higher lookahead results in a higher speedup

A higher lookahead in a conservative simulation results in longer safe windows,
and therefore possibly more events, that can be executed in parallel. Therefore,
I am sure that the use of the higher but dynamic lookahead, available in the
model, would result in a higher speedup.

6.2 Organisation of Experiments
The experiments in this study are organised in the following manner:

Purpose of Experiment This is the first part of each experiment. It states what is
the experiment trying to achieve, in the context of the goals of the experimental study.

Experimental Task The second part of an experiment describes which tasks are be
done in order to achieve the goal of the experiment.

Expected Results In this part, I give my personal expectations about the results
of an experiment. They are based on my view of the developed parallel/distributed
simulation system and the context of each experiment.

Task Solution This part describes the solution of the experimental task, and the
realisation of the experiment.

Discussion of Results Here I present, comment and explain the results of an
experiment.

6.3 Correctness Tests 69

| Parameter | Number of Nodes | Density [nodes/km?] |

Low High Low High
Value 100 400 10 20

Table 6.1: Parameters for correctness test

Conclusion In the last part of an experiment, I evaluate the meaning of the results,
and the contribution of the experiment to achieve the goals of the experimental study.

6.3 Correctness Tests

This section describes experiments that empirically test the correct operation of the
developed distributed simulation system. The first experiment in 6.3.1 tests whether
a distributed simulation produces the same results as a sequential one. And the
second one in 6.3.2 tests whether distributed simulations are repeatable under changing
network conditions.

6.3.1 Simulation Results Test

Purpose of Experiment The purpose of this experiment is to empirically prove
that a distributed simulation produces the same results as a sequential one.

Experimental Task The task is to run network models in a sequential simulation,
and in a distributed simulation on multiple computers and to compare the results.
These models should be run with different parameters like number of nodes, and
density. The results are files that contain information about events, happened during
the simulation. These files have to be compared byte-wise in order to see every possible
difference.

Expected Results Preliminary simulation tests show that distributed simulations
produce the same results as sequential ones when using 2 simulators. Therefore, I also
expect the same simulation results in simulations with more than 2 computers.

Task Solution For this distributed simulation I use a fixed number of 4 computers,
which is chosen to be larger than a simpler case with 2 computers. However, the
number is not higher than 4 because at the current stage there is no central controller
of the distributed simulation, and simulators have to be started by hand. Then, for
the number of nodes and density I choose 2 values respectively, one of them relatively
low, and the other relatively high (see table 6.1).

Note that 20 nodes/km? is not a high density in a real wireless network, but a
sufficiently high in a distributed simulation. This is because the sensing range in ns-2

70 6 EXPERIMENTAL EVALUATION

< r 0.093951705 _24_ MAC --- 1835008

> D 0.093951705 _24_ MAC COL 1835008

Figure 6.1: Difference in simulation results

is 550m, which is relatively high for 1km?2. This means that one node in the middle
of a square area of 1000x1000m can affect almost all other 19 nodes in this area, and
therefore a network with this density has a highly connected graph.

Different combinations of these parameters result in 4 different network models.
On every node in these network models I run a broadcast application, that sends one
packet in the network each second.

Discussion of Results The sequential and distributed simulation runs produce the
same results in the cases with low network density. This means that the synchronisation
method keeps the integrity of the model in this case. However, the results from
distributed simulation with higher density differ from the sequential case. The
differences show that some network packets are not delivered to their destinations,
and therefore produce different behaviour of the corresponding network nodes. Figure
6.1 shows a part of the output from the diff program|2|, that is used to compare the
results byte-wise. The diff program compares the simulation results and suggests that
the first line is replaced by the third line in order to make them the same. The first line
is from the distributed simulation, and the third one from the sequential simulation.
These lines show the action of the MAC layer at node number 24 at time 0.093951705.
Both nodes process the same packet at the same time, but behave in a different way.
In the distributed simulation node 24 receives the packet with ID 1835008 (shown
by the r sign). In the sequential simulation node 24 drops the packet, because of a
collision at the MAC layer (shown by the D and COL signs). This result shows that the
current packet with ID 1835008 is delivered correctly by the distributed simulation at
the same time as in a sequential simulation. The different behaviour of the MAC layer
can be caused from a previous packet, which was received in the sequential simulation,
but not received in the distributed one.

A deeper look at the model shows that this effect comes from the used scheme for
replicated execution of border nodes. This scheme assumes that when a border node
sends a packet, it does not need to be synchronised with other simulators. But there
are network scenarios that break this assumption. Figure 6.2 shows one of them. This
is a model of a network, divided into three parts, and executed on three simulators.
The figure shows the operation of the method for replicated borders. Simulator 1 has
a connection to the foreign node B from part 2, and therefore maintains an instance of
B. Similarly, simulator 2 maintains instances of A and C, and simulator 3 maintains

6.3 Correctness Tests 71

Part 1 : Part 2 : Part 3
| |
D ! E F

A B : (o]
: :
| |
| |

D E F
A B A B (o B Cc
o @
Simulator 1 Simulator 2 Simulator 3

Figure 6.2: Problem of replicated simulation

an instance of node B. Now, the method for replicated execution of border regions
marks node A as border, and when it sends a packet it does not synchronise it with other
simulators. This is correct for simulator 2, because it is a neighbour to simulator 1, and
also maintains an instance of A. But simulator 3 does not maintain node A, because
its own node C' does not have a direct connection to it. However, the transmission
from node A affects node B, which is represented in all simulators. Since simulator 3
is not informed about this interaction its instance of node B has a different and wrong
behaviour. Therefore, the simulation does not produce the same results as a sequential
one.

This effect comes from the fact that the method for replicated execution considers
only one possible role per node. The nodes A, B, and C have a role of borders, and
the nodes D, E, and F a role of disturber. And this method initiates synchronisations
only when a disturber node sends a packet. For instance, when node D sends a packet,
simulator 1 schedules it locally for node A, and informs simulator 2 for the change of
node A via a message. Now in order to operate correctly, this method needs to consider
the roles of the nodes, depending on their neighbourhood. For simulator 2 node A is a
border, and its activities do not need to be synchronised. But for simulator 3 node A
is a disturber, and it needs to be synchronised.

This effect appears only in the model with higher density, because there the graph

72 6 EXPERIMENTAL EVALUATION

has a higher connectivity, and introduces this special case. The simulation with low
density is correct, because the above effect does not appear there.

Conclusion This experiment shows two important results. First, the distributed
simulation produces the same results as a sequential, when the model does not contain
some special situations. This result shows that distributed simulation of wireless
networks in ns-2 is possible. It also proves that replacement of interactions in the
sequential model with message exchange in the distributed model is technically correct,
and leads to the same simulation results.

The second important conclusion is that the method for replicated execution
of border regions has to be refined in order to be used in more complex network
scenarios. And since all network scenarios can not be tested, this method has to be
also mathematically proved in order to be used for large-scale network simulations.

6.3.2 Repeatability Test

This experiment tests the distributed simulation system under different network
conditions and checks, whether it behaves in a deterministic way.

Purpose of Experiment Repeatability is an important feature of scientific
experiments, including simulations. However, a deterministic behaviour of a distributed
simulation system is a non-trivial issue. This is because simulators are separated
systems, interacting through a communication medium. The main concern are
simultaneous messages (also called concurrent messages), that are messages with the
same simulation time. These messages may arrive in different order, depending on
delays through the communication system, and if the order of their processing is not
defined, they can lead to nondeterministic simulations. In this thesis I implemented
a method to ensure a deterministic behaviour of the simulators in the distributed
system, under nondeterministic network conditions. So, the goal of this experiment is
to show that the developed distributed simulation system operates in a deterministic
way, regardless of the changing network conditions.

Experimental Task The task of this experiment is first to find an appropriate model
which can test the repeatability of the simulation system. Appropriate means a model
that introduces messages with the same timestamps between simulators. Then, the
second step is to run this model under different network conditions with different
communication delays. During these simulation runs, an observer has to keep track of
the execution of the simulation.

This task requires also simulation runs with the repeatability feature turned off, in
order to see the possible different behaviour under different network conditions in this
case.

6.3 Correctness Tests 73

Expected Results The technique for repeatability, used in this work is
straightforward, and based on simple mathematical and logical rules. The idea is
to request from the synchronisation layer a time advance AT after the time of the next
simulation event 7T,.. In this case the synchronisation middleware delivers all possible
messages with a timestamp less than T, + AT, which means also all messages with
timestamp 7,. Therefore, all events with timestamp 7, are known and ordered based
on their sender ID, before the first event in the row is executed. Since this technique
is simple and easy to implement, I expect a repeatable operation of the simulation
system.

Task Solution The simplest scenario to test the repeatability are two simulators,
which send messages with the same timestamp to a third one. In order to achieve this
behaviour, I create the following network model (see figure 6.3). The model is divided
into three parts, where nodes 0 and 1 belong to partition 1, nodes 2 and 3 to partition
number 2, and the nodes 4 and 5 to the third partition. Each network partition is
assigned to a separate simulator. Since the method of the border nodes is used, the
neighbouring nodes in the middle 1, 2, and 4 are simulated by all simulators. Then, the
simulators exchange messages when the nodes 0, 3, and 5 send packets in the network.
In order to achieve messages at the same timestamp, the distances between the nodes,
0— 1,3 — 2, and 5 — 4 are the same. These equal distances guarantee the same
propagation delays and if the nodes 0, 3, and 5 send packets in the same simulation
time, this will result in three messages with the same timestamp. In order to incite
these three nodes to send into the network at the same time, I start an application on
each node, which sends one packet per second, starting at time 0 (0, 1, 2, ...). This
application behaviour will not result in simultaneous messages each second, because of
the random backoff access method to the wireless medium. But when this model runs
long enough (100000 seconds for example), it is very likely that these simultaneous
messages occur.

This model is then run in a distributed simulation on three computers, connected
by a Fast Ethernet network. In order to introduce different network conditions, I use
a special queueing discipline on the network interface of simulator 1. This is a Token
Bucket Filter (TBF) queueing discipline with maximum data rate of 10MBit/s, and
latency of 100ms|8|. In a normal operation simulator 1 sends data into the Ethernet
network with a speed of around 13MBit/s. This queueing discipline slows down the
sending speed and introduces an additional latency which can delay messages during
simulation. Simulator number 1 has the smallest ID, and therefore the highest priority
messages, when they contain the same timestamp. This queueing discipline delays
messages, coming from simulator 1, and increases the probability for out of order
processing of simultaneous events.

During the simulations an observer tracks messages, in the order which they are

74 6 EXPERIMENTAL EVALUATION
D O=O

7
7\
\ /

7
3)\
\\/

Figure 6.3: Network model for repeatability test

FIFO order Deterministic order

Sim1 ‘ Sim2 ‘ Sim3 || Sim1 ‘ Sim2 ‘ Sim3

Out of order messages [%)] 23 | 49 | 21 | 10.8 | 89.6 | 11.3
Out of order external events [%] || 2.3 | 4.9 | 2.1 0 0 0

Table 6.2: Repeatability test — symmetric network

received. Additionally, it follows the order of execution of the corresponding ezternal
events. The goal of this monitoring is to see whether out of order messages result in
out of order events.

These simulations are also run with the repeatability feature turned off in order to
see the different behaviour by a pure FIFO ordering of simultaneous messages.

Discussion of Results The results from this experiment are shown in tables 6.2
and 6.3. Table 6.2 shows results from an experiment under normal conditions, i.e. a
symmetric network. Table 6.3 presents results from the asymmetric network, i.e. the
network with a queueing discipline on simulator 1. In each network I run a simulation
with a FIFO ordering, and a simulation with deterministic ordering of simultaneous
events. Then, for each simulator I measure the percentage of all concurrent messages,
that it receives out of order. Each external message in this scenario results in one
external event in the simulator queue. Therefore, I also measure the percentage of
all concurrent external events, that are executed out of order according to the defined
ordering notation. This last measure shows whether the simulation is deterministic or
not.

As expected, the communication system does not follow the semantics for order
of simultaneous messages, defined in the simulation system. The results show that

6.4 Speedup Tests 75

FIFO order Deterministic order

Sim1 ‘ Sim?2 ‘ Sim3 || Sim1 ‘ Sim?2 ‘ Sim3

Out of order messages |%| 3.8 | 984 | 98.6 || 3.6 | 98.4 | 98.8
Out of order external events [%] | 3.8 | 98.4 | 98.6 0 0 0

Table 6.3: Repeatability test — asymmetric network

even a symmetric network introduces out of order messages (see table 6.2). Moreover,
the percentage of out of order messages varies by the different simulation runs, which
shows that the order of messages is nondeterministic. All these messages result in out
of order execution of events, by the FIFO ordering. But the deterministic ordering
manages the unordered messages, and executes all external events in order.

The asymmetry in the network in the second series of simulations results in more
messages, received out of order (see table 6.3). This is because the highest priority
messages from simulator 1 are now delayed by the network. Therefore, the other
two simulators receive almost all of the concurrent messages out of order. The FIFO
ordering again keeps the order of the messages as it is, and executes almost all
concurrent external events out of order. But the deterministic ordering is aware of the
fact that messages can be delayed through the communication system. In spite of the
high proportion of unordered messages, it executes all external events in a repeatable
fashion.

Conclusion This experiment shows that the simulation system executes all external
concurrent events in a deterministic order. The other events, which are not concurrent
also have their strict order, defined by the synchronisation algorithm. This means
that all events in each simulator are executed in the same order from one execution
to another. Therefore, assuming that event computations are repeatable, the
distributed simulation system produces repeatable results, which is another aspect
of its correctness.

6.4 Speedup Tests

This section groups experiments that test the speedup from parallel simulations.
Section 6.4.1 presents an experiment that measures speedup, and the influence of
lookahead in a parallel simulation. Section 6.4.2 estimates the possible speedup from
parallel simulation, if dynamic lookahead was used.

6.4.1 Speedup Measurement

This section describes an experiment that measures speedup in parallel simulation.

76 6 EXPERIMENTAL EVALUATION

Purpose of Experiment Since the lookaheads, used in the current implementation
of the simulation system are small, it can hardly achieve a positive speedup. Therefore,
the purpose of this experiment is to show that a higher speedup is possible, if the
lookaheads were higher.

Experimental Task In order to achieve the goal of the experiment, the following
tasks have to be done:

1. Construct different simulation models, which provide different lookaheads. One
of these models should provide a maximum lookahead, possible from this
parallel /distributed simulation system.

2. Run each model in a sequential, and in a parallel/distributed simulator, and
compute the speedup for each model.

3. Compare the different speedups and estimate the possible speedup, if the
lookahead was higher.

Expected Results The lookaheads, in the current implementation are based on
propagation delays, and therefore are very small ([1...1500ns]). This results in short
safe windows, and smaller number of events which a simulator executes during its safe
window. The shorter the safe window, the more often the simulators have to stop event
processing and do synchronisation. Therefore, I expect that a simulation with these
lookaheads will result in a negative speedup.

On the other hand, special cases exist, where the lookahead can be set to infinity.
This is for example when two subnetworks are situated at a very big distance and do
not affect each other at all. In these cases I expect a maximum positive speedup from
the simulation, because there are practically no synchronisations.

Task Solution In order to have a control over the lookahead, I choose to simulate two
subnetworks, with a variable distance between them. Since the lookahead is determined
by the minimum propagation delay between these subnetworks, a higher distance
results in a higher lookahead. And when the distance is more than 550m, which is
the sensing range in the ns-2, the two subnetworks are completely independent and
then the lookahead can be set to infinity.

So, I generate different models of networks, which consist of two subnetworks with
a variable distance between them (100m, 200m, 400m, and 600m). I also use different
numbers of network nodes for these models (100, 400, 700, and 1000). This can give a
feeling, how the number of nodes in the network influences the speedup.

These models were run in a parallel simulation on a two-processor Pentium III
machine with a frequency of 450MHz.

6.4 Speedup Tests 7

Discussion of Results Figure 6.4 shows the results from this experiment. The
first result to be noticed is that the models with small lookaheads [300ns...1200ns]
achieve a negative speedup. As expected, this comes from short safe windows and
small number of events, executed in parallel. Even when the lookahead is increased 4
times from 300ns to 1200ns, meaning possibly 4 times more events processed in parallel,
the speedup increases only very few.

Lets consider two different test runs. One is by lookahead 300ns, and 100 nodes,
and the other is at lookahead 1200ns and 1000 nodes. The second test has 10 times
more nodes, which implies around 10 times more events within the simulation, so their
distribution in the time scale is 10 times more frequent. The second test has also a 4
times larger lookahead, which implies around 4 times larger safe window. These mean
that during the second simulation run there were around 40 times more events per safe
window than in the first one. Nevertheless, the increase in the speedup is only 0.1.
This means that the work, done on synchronisation takes much more time than the
work, done on processing of events. Therefore, these results induce another interesting
question. How many times more events per safe window are needed in order to increase
the speedup with 1, and make it in the interval [1.4...1.5]7 This might be a question
for an additional experimental study.

Another result from this experiment is that when the lookahead is infinity the
speedup is positive. This result gives the maximum possible speedup, that can be
achieved. Theoretically the speedup in this case is equal to the number of processors,
in this case 2, because they do not interact during the simulation. But in practice
there are factors that reduce this speedup. In this implementation all simulators start
simulation with the whole model. Each simulator interprets and separates it on its own,
and then activates only one part of it, which it then simulates. This work is done from
both simulators, so it does not contribute to parallel processing and to the speedup.
But the results show that when the pure simulation work increases 10 times from 100
to 1000 nodes, it compensates this duplicated work at the beginning and increases the
speedup with around 0.5.

Conclusion This experiment gives an estimation of the maximum possible speedup
from a parallel simulation. It shows that this maximum speedup is positive and close
to the theoretical maximum. So, it shows that a speedup with this simulation system
is possible, if the lookahead was higher. However, this experiment does not answer how
longer the lookahead needs to be in order to achieve a positive speedup. Also how
much speedup is possible with the dynamic lookahead in the simulation model?

6.4.2 Speedup Estimation

This section presents an experiment that estimates the possible speedup from parallel
simulation, if the lookahead was higher.

78 6 EXPERIMENTAL EVALUATION

Speedup
T

Lookahead values: infinity ——
1200ns --------
600Nns ---neeee
300n§ -------------

1 1 1
100 200 300 400 500 600 700 800 900 1000
Number of nodes

Figure 6.4: Speedup depending on lookahead

Purpose of Experiment The purpose of this experiment is to answer the questions,
that the previous experiment brought up:

1. How much lookahead is needed in order to achieve a positive speedup in the
non-trivial case when lookahead is not infinity?

2. Is this lookahead available in the simulation model?

Experimental Task The first task of this experiment is to artificially increase the
lookahead in wireless network simulations with ns-2, and to measure the resulting
speedup. The lookahead is to be increased until it results in a positive speedup.
Then, the second task is to estimate the possible dynamic lookahead, available in
the simulation model.

Expected Results The previous experiment showed that a short lookahead results
in a speedup of around 0.5, and a lookahead of infinity in around 1.7. Therefore, I
expect that there is a value of the lookahead that causes the speedup to be a positive
number around 1. However, this value can be hardly estimated beforehand.

For the possible dynamic lookahead, T expect values in the range [1...30ms]|, because
of the operation of wireless networks in the context of this thesis (see section 2.5).

6.4 Speedup Tests 79

Task Solution The currently used lookahead in parallel and distributed simulations
is fixed and based on propagation delay. Therefore, the only way to artificially increase
the lookahead is to change the propagation delay. The propagation delay between two
network nodes A and B in ns-2 is calculated by the formula:

Distance(A, B)
Speedof Light

Propagation Delay =

Therefore, in order to increase the propagation delay one needs either to increase
the distance between nodes, or to decrease the speed of light in the model. Since
the maximum possible distance (550m) still results in a very small propagation delay
(1.8us), the only way to further increase the propagation delay is to decrease the speed
of light in the model. For this experiment I choose a speed of light of 100km /s, which
results in a propagation delay of 1ms at a distance of 100m. The network topology
is again two subnetworks with a variable distance between them, like in the previous
experiment. The network nodes run a real-time communication protocol, used in the
context of this thesis (see section 2.5). The experiments start with a distance of 100m.

The possible dynamic lookahead is theoretically estimated in the range [1...30ms],
but it depends on the dynamics of the network. In order to estimate in more precisely I
measure the time intervals in simulation time in which the simulators send messages to
each other. These time intervals depend on the behaviour on the nodes in the border
areas of the network.

Discussion of Results Figure 6.5 shows the speedup of this simulation with a
distance between the networks 100m, and a lookahead of 1ms. This speedup is clearly
positive, which means that a lookahead of 1ms is enough to achieve a positive speedup
in parallel simulation. Figure 6.6 shows the other result from this experiment. It is a
distribution of the time intervals in simulation time between two consecutive messages
send by the LPs in this parallel simulation. The graphic shows that these intervals are
in nearly 90% of the cases in the range [0...30ms]. This a rough estimate of the dynamic
lookahead, available in the simulation model, because it is a result from one simulation,
and not from analytical evaluation of the model. In order to be used in a conservative
simulation, these lookaheads have to be analytically proved. It is possible that only
parts of this dynamic lookahead can be proved and used for synchronisation. But
nevertheless, the magnitude of the available lookahead is higher than the lookahead,
needed for a positive speedup in this case. Therefore, it gives a good promise for a
positive speedup even in distributed simulations, where synchronisation takes more
time.

Conclusion This experiment shows that the lookahead, needed for a positive speedup
in a parallel simulation, is available in the simulation model. The available lookahead is

30

Speedup

6 EXPERIMENTAL EVALUATION

2 T T T T T T T T
L T R TR PR
1 e e
0.5 |-

Lookahead value: 1ms

O 1 1 1 1 1 1 1 1

100 200 300 400 500 600 700 800 900 1000
Number of nodes
Figure 6.5: Estimated speedup
30

25

20

Frequency [%)]
o
|

10+
) I
0,

5-10

10-15 15-20 20-25 25-30 Higher

Interval [ms]

Figure 6.6: Message intervals distribution

6.5 Interpretation of Results 81

even with magnitudes higher, which also gives a promise for a speedup in a distributed
simulation. These are important conclusions, that contribute to the goal of this thesis.
They show that if additional efforts extract a higher lookahead, a positive speedup of
wireless network simulations is possible.

6.5 Interpretation of Results

This section evaluates the achievements of the experimental results in the context of
the goals of the experiments. Then it gives possible directions for future experimental
tests.

Evaluation of Results These experiments showed that distributed simulation
correctly translates interactions between parts of a sequential model into interactions
between simulators in a distributed model. The used technique for replicated simulation
of border regions keeps the model-related parameters of these interactions correct, and
results in correct distributed simulations. However, some special situations in the
network models show that this technique is not completely precise in informing all
interested simulators about an interaction in the model. The technique for replicated
simulations needs to be additionally revised in order to produce correct results in all
cases.

Another contribution to the correctness of distributed simulations is the proof of
their repeatability. The experiments showed that distributed simulation operates in a
deterministic way under a nondeterministic behaviour of the communication system.
This means that distributed simulations produce the same results from one run to
another, and can be used to correctly test and follow errors in a simulation model
during its development.

The experiments also showed that the use of short lookaheads results in a negative
speedup, even in parallel simulations, where synchronisation is much faster than in
distributed simulations. This means that additional model-related information has to
be used in order to achieve longer lookaheads and a higher speedup. Furthermore, the
experiments showed that the use of this information would result in a positive speedup
in parallel simulation.

Future Experimental Tests A question for future experimental tests is the
speedup in distributed simulation on multiple computers within one network. These
experiments require the development of a testing environment, and a central controller
to maintain the execution of experiments and gather the results.

An Interesting experimental question is for example the dependence of speedup from
different factors in the network model. These can be density of the network, structure
of the network (clustered or uniformly distributed nodes). Another factor that might

82 6 EXPERIMENTAL EVALUATION

influence speedup is the behaviour of the applications, i.e. the part of intra-cluster and
inter-cluster communications. Another practically related parameter is the number of
processors in a distributed simulation. It would be interesting to see how the number
of processors influence the speedup, and what is the optimal number of processors for
a given simulation scenario. These experiments require the use of dynamic lookahead
in order to promise a positive speedup.

7 Conclusions and Outlook

This final section summarises the main aspects of the thesis, the lessons from it and
gives directions for future research.

Summary This thesis work is motivated by the time-consuming simulations of one
particular network simulator — the ns-2[9]. These long-running simulations delay the
development cycle of communication protocols for wireless networks. Therefore, the
goal of this thesis work is to reduce the running time of wireless network simulations
with ns-2 by using multiple processing units to complete a single simulation task. The
task of the thesis, arising from this goal, is to extend the ns-2 to run simulations on
multiple computers within one network. The main challenge of this task is to keep the
entirety and correct execution of the simulation model during a distributed simulation.
Due to the large scale of the used models (100...1000 nodes), a necessary preprocessing
step is to automatically divide the network model into multiple parts, suitable for a
distributed execution.

Within this thesis I have designed and implemented a distributed simulation
framework in the network simulator ns-2. It allows to automatically separate the
simulation model, using a graph partitioning technique. The used algorithm|26] is
specially optimised for distributed simulations, and implemented by the Metis graph
partitioning library[5]. This method for network separation automatically divides the
network into groups of nodes (partitions), and assigns each partition to a separate
simulator. In a sequential simulation these partitions interact by exchanging events. In
order to keep the integrity in a distributed simulation, the simulators exchange messages
through a network to inform each other about these interactions. These messages
are exchanged using the communication and synchronisation middleware LibSynk[4].
It provides a high level abstraction to message exchange and synchronisation in
distributed applications, and can operate both over a computer network and over
a shared memory. This provides a flexibility to run both parallel and distributed
simulations with the same implementation. On top of the synchronisation middleware,
I have designed and implemented a module to guarantee repeatability of distributed
simulations, regardless of the properties of the communication system. This method
is effective, easy to understand, and has a reasonable cost. Experimental results show
that the parallel and distributed simulation system operates correctly, and produces the
same results as a sequential simulation. It has also shown its deterministic behaviour
under changing network conditions, which is a proof for repeatable simulations. This
is a solution to the task of the thesis.

However, the solution of the task did not suffice to achieve the goal of the thesis,
i.e. a positive speedup. This is because the used technique for synchronisation
in distributed simulation utilises a low part of the parallelism, available in the
simulation model. This results in a high amount of work by the management of

84 7 CONCLUSIONS AND OUTLOOK

the distributed simulation. In fact the management work takes even more time
than the pure simulation work, because it also includes communications through a
network. Therefore, distributed simulations are also time-consuming and even slower
that sequential simulations.

But nevertheless, the solution of the thesis task has a contribution to achieve
the goal. This is a basic system for parallel and distributed simulation, which has
proved its correct operation. Moreover, experimental results show that a positive
speedup is possible with the use of a higher level knowledge about the simulation
model. This knowledge is available, and results in a positive speedup in parallel
simulations. Furthermore, it gives a reasonable promise for a positive speedup in
distributed simulations of wireless networks. In this sense the solution of the task of
this thesis is a correct step for the achievement of its goal.

Outlook The result of this thesis work is a parallel and distributed simulation
system for wireless networks. At this stage it can be used to speedup simulations of
stationary wireless networks, containing independent subnetworks. These independent
subnetworks have to be either at a big distance, or to use different wireless
communication channels in order to avoid the need of synchronisation, which is the
current bottleneck of the distributed simulation.

The developed simulation system can be also used as a base for further development
and improvements. They are needed in order to achieve the goal of this project. There
are two main aspects which have to be further investigated.

A first aspect for the near future is adaptive synchronisation. It considers the use
of more information from the model in order to reduce the work for management of
distributed simulation, and to increase the speedup. This information is available in
the model, but has a dynamic nature. It requires a method to dynamically change the
lookahead in the distributed simulation system.

A challenge for the far future is distributed simulation of mobile networks. When
the network nodes in the model move they also introduce dynamics in the simulation
infrastructure. In this case the simulation framework has to track the interactions and
changes occurring in the model. In order to keep its integrity it has to dynamically
decide which other simulators in the system to inform about these interactions.
Furthermore, when the network nodes move, they might scatter from their initial
position and do not form a cluster suitable for a distributed simulation. In these
cases it is possible that a repartitioning of the model is needed in order to achieve
higher speedup. So, distributed simulations of mobile networks need to be periodically
reorganised, and repartitioned in order to achieve a good performance. The main
challenge here is not the repartitioning itself, but the migration of network nodes in
the model from one simulator to another. Since the ns-2 is a sequential simulator
such migration possibilities are not planed in its design. Moreover, it is optimised for

85

a sequential simulation, and network nodes are tightly coupled with the simulation
framework for a best sequential performance. Therefore mobility is another big
challenge for distributed simulation with ns-2.

When further investigations solve these problems, the result of this thesis can
be used to speedup wireless network simulations. This can result in a simulation
framework, that helps to increase the quality of communication protocols, and satisfy
the increasing requirements for mobile communications.

Lessons This thesis has also positive contributions to my personal development.
These are gains both in the area of computer science and in personal aspect.

The most significant gain to my professional competences are the knowledge
and experience in the area of distributed simulation. I had to cope with typical
problems in distributed systems like serialisation /deserialisation of data structures and
unpredictability of communication flows. Furthermore, the study and use of parallel
algorithms developed my abilities to think in parallel on behalf of multiple processing
units, participation in one operation. I am sure that these gains will contribute to my
further development in the field of network technology, where similar problems arise.

The personal competences have even a higher value for me than the professional
ones. This is because professional skills have a pure technical nature. They are
something transitional, and their relevance may fade with time. This is because
problems that we cope with now might not be real problems of the future. While
the personal skills build a maturity, which is more general and will be always needed.

The most important lesson for me in personal aspect is to thoroughly brainstorm
and prove new ideas, before starting to use them. Sometimes we have “such a great
new idea” that we believe that it brings to the desired result, only based on a cursory
judgement. One has to be sure that the new “great idea” brings to the wanted result,
before starting to use it. It is even better to test new ideas with other people, which
can have an objective view of our thinking. Even though this lesson came from a
new idea for the design of the simulation system, it has a general contribution. New
ideas will continue to come in the future, no matter of their context or the state of the
technology, and they have to be treated appropriately.

36

7 CONCLUSIONS AND OUTLOOK

References

[1] AutoPart: simulation partitioning tool for PDNS.
http://www.cc.gatech.edu/grads/x/Donghua.Xu/autopart /.

[2] Diffutils: tools to comparing and merging files.
http://www.gnu.org/software/diffutils /diffutils.html.

[3] Eine Publisher /Subscriber-basierte Middleware mit
Dienstgiite-Garantien ~ zur Unterstiitzung kooperativer =~ Anwendungen.
http://www-ivs.cs.uni-magdeburg.de/EuK /forschung/projekte /spp1140/index.shtml.

[4] libSynk: library for communication and synchronisation in distributed
applications. http://www.cc.gatech.edu/fac/kalyan/libsynk.htm.

[5] METIS: family of multilevel partitioning algorithms.
http://www-users.cs.umn.edu/ karypis/metis/index.html.

[6] Nam: Network Animator. http://www.isi.edu/nsnam/nam/.
|7|] PDNS: Parallel /Distributed NS. http://www.cc.gatech.edu/computing/compass/pdns/ .

|8] TBF: Token Bucket Filter queueing discipline.
http://www.die.net/doc/linux/man/man8 /tc-tbf.8.html.

[9] The Network Simulator ns-2. http://www.isi.edu/nsnam/ns/.
[10] The WINDECT Website. http://www.windect.ethz.ch/.

[11] Luciano Bononi et al. A new adaptive middleware for parallel and distributed
simulation of dynamically interacting systems. In IEEE International Symposium
on Distributed Simulation and Real-Time Applications, Eighth, pages 178-187.
IEEE Computer Society, 10 2004.

[12] K. M. Chandy and J. Mirsa. Distributed simulation: A case study in design and

verification of distributed programs. IEEE Transactions on Software Engineering,
5(5):440-452, 1978.

[13] Farid Dowla. Handbook of RF & Wireless Technologies. Elsevier, Inc., 2004.

[14] Jerry Banks et al. Discrete-Event System Simulation. Prentice Hall, second
edition, 1996.

[15] Alois Ferscha. Parallel and distributed simulation of discrete event systems. 1996.

38 REFERENCES

[16] G. Fettweis, T. Hentschel, and E. Zimmermann. WIGWAM - a wireless gigabit
system with advanced multimedia support. In VDE-Kongress, 2004.

[17] H. T. Friis. A note on a simple transmission formula. Proc. IRE, 34, 1946.
[18] Richard M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley, 2000.

[19] Jim Geier. Wireless LANs: Implementing Interoperable Networks. Macmillan
Network Architecture & Development Series, 1999.

[20] Andre Herms and Daniel Mahrenholz. Unified Development and Deployment of
Network Protocols. In Proceedings of MeshNets, 2005.

[21] Graham Horton. Introduction to Simulation. Lecture in Computer Science, 2004.

[22] Institute of Electrical and Electronics Engineers (IEEE), Inc. ANSI/IEEE Std
802.11, 1999 Edition, 1999.

[23] D. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7(3):404-425, 1985.

[24] Z. Jiet al. Optimizing parallel execution of detailed wireless network simulation. In
Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS),
2004.

[25] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. Technical Report 95-035, University of Minesota,
1995.

[26] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for
irregular graphs. Technical Report 95-064, University of Minesota, 1995.

[27] George Karypis Kirk Schloegel and Vipin Kumar. Graph partitioning for high
performance scientific simulations, 2000.

[28] Kiran Madnani and Boreslaw K. Szymanski. Integrating distributed wireless
simulation into genesis framework. In Proc. Summer Computer Simulation
Conference, Montreal, Canada, 2003.

[29] T. S. Rappaport. Wireless Communications, Principles and Practice. Prentice
Hall, 1996.

[30] Stefan Schemmer. A Middleware for Cooperating Mobile Embedded Systems. PhD
Thesis, Otto-von-Guericke-University, 2004.

REFERENCES 89

[31] F.A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part II -
The Hidden Terminal Problem in Carrier Sense Multiple Access and Busy Tone
Solution. In IEEE Trans. on Commun., 1975.

[32] Wave7 Optics, Inc. TCP Performance on Broadband Networks, 2002.
[33] XTP Forum. Xpress Transport Protocol Specification, 1998.

[34] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: A library for parallel
simulation of large-scale wireless networks. In 12th Workshop on Parallel and
Distributed Stmulation, 1998.

90

REFERENCES

Declaration of Independence

I declare that I have developed this master’s thesis independently, and only with the
use of the specified sources.

Svilen Ivanov
Magdeburg, the 20.06.2005

