HowTO: WIRELESS NETWORK EMULATION

USING NS2 AND DISTRIBUTED APPLICATIONS.
VERSION 1.0

11TH DECEMBER 2004

Daniel Mahrenholz, Svilen Ivanov

University of Magdeburg, Germany

Contents

1 Introduction

1.1 Copyright Information L L0
1.2 Disclaimer
1.3 Credits
1.4 Feedback
1.5 Support
1.6 Structure L

2 Quick Walk-through

2.1 Configure the network L
2.2 Download
2.3 Setup Hosts e
2.4 NS-2Emulation e
2.5 Test Communication e

3 Network setup

3.1 Addressing scheme L
3.2 Connectivity L
3.3 Host Requirements

4 NS-2 Emulation

4.1 Emulation Modules
4.1.1 Network Object o
4.1.2 Tap Agent L

4.2 Real-Time Scheduler
4.2.1 Delayed Execution o000
4.2.2 Transmission Time Compensation

4.3 Trace Extensions

4.4 Sample NS-2 Emulation Script 0.

5 Disadvantages

A NS-2 Emulation Script

W W W ww W

0 ~J O O Ot Ot

14
14
14
14
15
15
15
17
18

19

22

1 Introduction

This document describes how to distribute a set of network applications among several
machines in a LAN. Next, it shows how to use the network simulator ns-2 to capture
the traffic among these applications and pass it through a simulated network [1]. By
“Distributed Applications” here we mean that the applications do not run on the same
host as ns-2, but are spread among several machines in a LAN.

This document is based on a work from Daniel Mahrenholz and Svilen Ivanov - “Real-
time network emulation with ns-2” [3].

1.1 Copyright Information

This document is Copyright (¢) 2004 Svilen Ivanov and Daniel Mahrenholz. Permission is
granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software
Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
The licence you can find on the link http://www.gnu.org/copyleft/fdl.html.

1.2 Disclaimer

No liability for the contents of this documents can be accepted. Use the concepts, examples
and other content at your own risk. As this is a new edition of this document, there may
be errors and inaccuracies, that may of course be damaging to your system. Proceed with
caution, and although this is highly unlikely, the author does not take any responsibility
for that.

1.3 Credits

This work was sponsored by the German Research Foundation (DFG), grand no. NE
837/3-1 and the University of Magdeburg, Germany.

1.4 Feedback

Feedback is most certainly welcome for this document. Without your submissions and
input, this document wouldn’t exist. Please send your additions, comments and criticisms
to the following email address:

<svilen (at) cs.uni-magdeburg.de>.

1.5 Support

If you encounter problems during the following of this document, you can post a re-
quest on our “nse — NS-2 Emulation Extension” mailing, located on the following address:
http://mail-ivs.cs.uni-magdeburg.de /mailman /listinfo/nse .

1.6 Structure

The document is structured in the following way. Section 2 gives a quick command reference
to run ns-2 emulation with distributed applications. In section 3 we describe the structure
of the network among the applications and show how they communicate through ns-2.
After that, in section 4 we describe short the principles of network emulation in ns-2 and
our extensions to it. Section 5 describes the drawbacks of this method and its current

implementation.

2 Quick Walk-through

This section gives a step-by-step procedure to run ns-2 emulation. It runs ns-2 on one
machine in a LAN, and the applications are distributed among other machines in the same
LAN. Multiple applications can be run on one machine. If you encounter problems here,

please read sections 3 and 4, which explain the steps in detail.

Here we use a network of three computers. One is running the ns-2 simulator, and the
other two hosts are used to run applications. We will call them Simulator, Host2, and

Host3 for convenience.

2.1 Configure the network

First assign IP addresses to every host in the network.

1. At Simulator:

root@simulator:~# ifconfig ethO 192.168.1.1 up

2. At Host 2:

root@host2:"# ifconfig eth0 192.168.1.2 up

3. At Host 3:

root@host3:"# ifconfig eth0 192.168.1.3 up

Now you should have connection between the simulator and the two hosts:

1. At Simulator:

root@simulator:~# ping 192.168.1.2

PING 192.

64 bytes
64 bytes
64 bytes
64 bytes

168.1.2 (192
from 192.168
from 192.168
from 192.168
from 192.168

.168.1.2): 56 data bytes

.1.2: icmp_seq=0 ttl=64 time=1.3
.1.2: icmp_seq=1 ttl=64 time=0.2
.1.2: icmp_seq=2 ttl=64 time=0.2
.1.2: icmp_seq=3 ttl=64 time=0.2

---192.168.1.2 ping statistics ---
4 packets transmitted, 4 packets received, 07 packet loss
round-trip min/avg/max = 0.2/0.4/1.3 ms

2. At Simulator

ms
ms
ms
ms

root@simulator:™# ping 192.168.1.3

PING 192.168.1.3 (192.168.1.3): 56 data bytes

64 bytes from 192.168.1.3: icmp_seq=0 ttl=64 time=0.7 ms
64 bytes from 192.168.1.3: icmp_seq=1 tt1l=64 time=0.2 ms
64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.2 ms
64 bytes from 192.168.1.3: icmp_seq=3 tt1=64 time=0.2 ms

--- 192.168.1.3 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 0.2/0.3/0.7 ms

2.2 Download

Download and extract our ns-2 patch and sample scripts from the web page of the project
http://www-ivs.cs.uni-magdeburg.de/eukneu /forschung/projekte/nse/ . Execute the fol-
lowing commands on each computer:

1. Simulator:

user@simulator$ cd ~

user@simulator$ wget http://www-ivs.cs.uni-magdeburg.de/eukneu/forschung/ \
projekte/nse/ns2emu-dstapp.tgz

user@simulator$ tar xzf ns2emu-dstapp.tgz

2. Host 2:

root@host2:"# cd ~

root@host2:"# wget http://www-ivs.cs.uni-magdeburg.de/eukneu/forschung/ \
projekte/nse/ns2emu-dstapp.tgz

root@host2:"# tar xzf ns2emu-dstapp.tgz

3. Host 3:

root@host3:"# cd ~

root@host3: # wget http://www-ivs.cs.uni-magdeburg.de/eukneu/forschung/ \
projekte/nse/ns2emu-dstapp.tgz

root@host3:"# tar xzf ns2emu-dstapp.tgz

2.3 Setup Hosts

The following commands configure the two hosts, so that each of them can run three appli-
cations. The scripts tapcfg, appstart2 and appstart3 contain paths to some commands.
Please edit them and make sure that they reflect the correct paths in your system.

1. Host 2:

root@host2:~# cd ns2emu-dstapp/TapUDP/

root@host2:~/ns2emu-dstapp/TapUDP# make

g++ tapudp.cc -o tapudp

root@host2:~/ns2emu-dstapp/TapUDP# ./scripts/tapcfg create 3

Creating 3 TAP devices

Allocated TAP devices: tap0O .. tap2

root@host2:~/ns2emu-dstapp/TapUDP# ./scripts/appstart2

root@host2:~/ns2emu-dstapp/TapUDP# ./scripts/netdelays.pl

root@host2:~/ns2emu-dstapp/TapUDP# scp pdelays.tcl 192.168.1.1:\
/home/user/ns2emu-dstapp

Password:

pdelays.tcl 100 | skskokskok skok skook sk ok sk ok sk skok 3k ok sk ok sk ok sk 30k 30k 3ok ok kK k|

root@host2:~/ns2emu-dstapp/TapUDP#

2. Host 3:

root@host3:~# cd ns2emu-dstapp/TapUDP/
root@host3:~/ns2emu-dstapp/TapUDP# make

gt++ tapudp.cc -o tapudp

root@host3:~/ns2emu-dstapp/TapUDP# ./scripts/tapcfg create 3
Creating 3 TAP devices

Allocated TAP devices: tap0 .. tap2
root@host3:~/ns2emu-dstapp/TapUDP# ./scripts/appstart3
root@host3:~/ns2emu-dstapp/TapUDP#

If you encounter problems here, it is very likely that your systems do not satisfy one of the
host requirements. See section 3.3 for details.

2.4 NS-2 Emulation

The following commands introduce the network simulator ns-2 in the network, configured at
the previous step. You will need a copy of the source code of ns-2, which you can download
from the link http://www.isi.edu/nsnam/dist/ns-allinone-2.27.tar.gz . Then you will have
to apply our patch and compile ns-2.

For a successful compilation you need the z1lib library and header files [4]. If they
are not, present in your system, you can download them from the zlib home page http:
//www.gzip.org/z1lib/.

Another library that you need to compile the emulation modules in ns-2 is the pcap
library. If it is not present in your system, you can find it on the web page: http:
//www.tcpdump.org/.

Switch to the Simulator machine and execute the following commands:

1. Apply the patch to the ns-2 source code and rebuild it:

606

user@simulator$ cd ns-2

user@simulator:~/ns2$ patch -pl < “/ns2emu-dstapp/ns2emu-dstapp.diff
user@simulator:~/ns2$./configure

user@simulator:~/ns2$ make clean

user@simulator:~/ns2$ make

user@simulator:~/ns2$ su

root@simulator:# 1ln -s ‘pwd‘/shmlog /usr/bin/shmlog

2. Start the simulator with the sample setup script that we provide (root privileges
required):

root@simulator:# cd “user/ns2emu-dstapp
root@simulator:# /path_to_ns-2_directory/nse ns2emu-dstapp.tcl

Important is that the previously generated pdelays.tcl file is present in the cur-
rent directory when you start the simulator. It contains timing properties of the
communication network, that are considered in the simulation.

2.5 Test Communication

Now switch again to one of the hosts and test the connection between the applications.
This time all the traffic should pass through the simulator. You can have three possible
communication paths:

1. Intra-network communication

This is communication in the same network in terms of figure 1. Here the packets
flow between TAP1 in host 2 and TAP1 in host 3.

Host 2:

root@host2:~/ns2emu-dstapp/TapUDP# ping 10.1.0.3 -c 4
PING 10.1.0.3 (10.1.0.3): 56 octets data

64 octets from 10.1.0.3: icmp_seq=0 ttl=64 time=94.6 ms
64 octets from 10.1.0.3: icmp_seq=1 ttl=64 time=10.2 ms
64 octets from 10.1.0.3: icmp_seq=2 ttl=64 time=9.8 ms
64 octets from 10.1.0.3: icmp_seq=3 ttl=64 time=10.3 ms

--- 10.1.0.3 ping statistics ---
4 packets transmitted, 4 packets received, 07 packet loss
round-trip min/avg/max = 9.8/31.2/94.6 ms

2. Inter-network communication

This is communication between different networks in terms of figure 1. Here the
packets flow between TAP1 in host 2 and TAP3 in host 3.

Host 2:

root@host2:~/ns2emu-dstapp/TapUDP# ping 10.1.3.3 -c 4
PING 10.1.3.3 (10.1.3.3): 56 octets data

64 octets from 10.1.3.3: icmp_seq=0 ttl=64 time=82.8 ms
64 octets from : icmp_seq=1 ttl=64 time=10.1 ms
64 octets from icmp_seq=2 ttl=64 time=10.1 ms
64 octets from icmp_seq=3 ttl=64 time=10.7 ms

= =
o O
IR

-
o

--- 10.1.3.3 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 10.1/28.4/82.8 ms

3. Intra-host communication

This is communication between TAP interfaces on the same host (see figure 1). Here
the packets are exchanged between TAP1 and TAP2 on host 2. Because of the
used addressing scheme (see section 3) the packets are not delivered locally, but pass
through the simulator.

Host 2:

root@host2:~/ns2emu-dstapp/TapUDP# ping 10.1.2.2 -c 4
PING 10.1.2.2 (10.1.2.2): 56 octets data

64 octets from 10.1.2.2: icmp_seq=0 ttl=64 time=93.5 ms
64 octets from 10.1.2.2: icmp_seq=1 tt1l=64 time=9.8 ms
64 octets from 10.1.2.2: icmp_seq=2 tt1l=64 time=9.8 ms
64 octets from 10.1.2.2: icmp_seq=3 ttl=64 time=10.3 ms

--- 10.1.2.2 ping statistics ---
4 packets transmitted, 4 packets received, 07 packet loss
round-trip min/avg/max = 9.8/30.8/93.5 ms

Congratulations! You have successfully used ns-2 to emulate a wireless network among a
set, of distributed applications in a local area network. If you have encountered problems
through this procedure, or you want to send us a remark, do not hesitate to contact us
(see section 1.5 for details).

3 Network setup

This section describes how to setup the hosts in the network so that each host can embed
several applications.

The setup is based on the TAP virtual Ethernet interfaces [2]. The kernel treats them in
the same way as real network interfaces. The difference to the real ones is that user-space
programs act as “network cable” for these virtual interfaces. When the kernel sends an
Ethernet frame through a tapXX interface, an application receives it via the /dev/tapXX
device file. On the other way, when a user-space program writes an Ethernet frame to the
/dev/tapXX device the kernel receives it through the corresponding tapXX interface.

In this setup we use a single host to accommodate several applications. Every appli-
cation has a corresponding node in ns-2 on which it is simulated to be running. On the
hosts we allocate one TAP interface per node in the ns-2 simulation. In this way, all the
applications that use the TP address of the TAP interface are simulated to be running on
the same node in ns-2.

On each host runs also an additional program called tapudp that connects the appli-
cations, running on the host with ns-2. It collects all packets that the applications send
through the TAP devices and forwards them to ns-2 via UDP. In the simulator these frames
are encapsulated in simulator packets and sent through a simulated network. When the
packets are received in the simulated network, they are sent to the tapudp program on
one of the remote hosts. This program delivers the packet to the destination application
through the corresponding TAP interface.

3.1 Addressing scheme

This network setup uses a specific addressing scheme. Each host is assigned a host number,
and each TAP interface within a host is assigned a network number. These two numbers
are encoded in the IP and MAC addresses of each TAP interface. The network number is
the second byte in the IP address, and the host number is the last byte. For example the
IP address of host 1 in network 2 is 10.2.0.1. Figure 1 shows an example addressing with
three networks and three hosts.

Each node in ns-2 represents a TAP interface (respectively an application). We use
the hierarchical addressing scheme in ns-2. The address of each node is determined by the
network number and host number of the corresponding TAP interface (e.g. for interface
10.2.0.1 the address of the node is 2.1).

With this fixed address mapping scheme the agents in ns-2 can determine the source
and destination nodes from the source and destination addresses of the real packets.

3.2 Connectivity

In this setup we want to provide means for communication between each couple of applica-
tions (TAP interfaces). We also want to pass through ns-2 all the communication between
applications.

10

Network 2 Network 3

Network 1

Figure 1: Addressing scheme

11

There are different communication types in this setup. First is communication between
interfaces in the same network (Intra-network). Second is communication between inter-
faces in different networks (Inter-network). This includes even the case when the source
and destination TAPs are on the same host (Intra-host). In all these cases we want to pass
all the communication through ns-2.

Typically in a real network, an application sends a packet specifying only the destination
address. The source address is usually determined by the operating system. In our setup
we want to keep this behaviour and require from the applications to specify only the
destination address when they send packets. The problem here is that on our real host we
have many possible TAP interfaces through which a packet may go out. So we decide to
encode the outgoing TAP interface in the destination IP address.

For example destination address 10.1.2.3 means: “send a packet through the TAP
interface in network 1, to the TAP interface in network 2 of host 3”.

To implement this addressing scheme we have to change the source and destination
addresses of the IP frames in the simulator.

3.3 Host Requirements

This section describes the requirements to the hosts, that are used to run the applications
(host2 and host3 in the above examples).

1. TUN/TAP driver

The TUN/TAP (option CONFIG_TUN) driver should be included in the kernel. In
2.4.26 kernel you can find this option under “Network device support -> Universal
TUN/TAP device driver support”. If your kernel does not provide you this option you
can download a patch from the TUN/TAP home page http://vtun.sourceforge.
net/tun/. The driver supports kernel series 2.2.x, 2.4.x and 2.6.x.

2. /dev/net/tun device

If the device /dev/net/tun (in some systems /dev/tun) does not exist on your
system, you have to create it in order to access the TUN/TAP driver. You can use
the following commands:

root@host2~# mkdir /dev/net
root@host2~# mknod /dev/net/tun c 10 200

3. tunctl tool

You need also the tunctl tool, which is used to configure TUN/TAP devices. If it is
not present in your system, you can download it from the following link: http://www.user-
mode-linux.org/cvs/tools/tunctl/ .

4. ping tool

12

You need the ping tool from the iputils package. We use the its possibility for
adaptive ping (option -A) to test the network throughput before simulation. If the
iputils is not repserent in your system you can obtain it from ftp://ftp.inr.ac.
ru/ip-routing/iputils-current.tar.gz.

. Perl Interpretator

We use a simple perl script to measure the throughput of the network. You can
obtain perl from http://www.perl.com/.

13

4 NS-2 Emulation

The ns-2 emulation feature is used to introduce the simulator into a live network. It
can grab packets from a real network, pass them through a simulated network, and then
inject them back into the real one. This section shows how to introduce ns-2 in the
network, described in the previous section. In this example ns-2 is running on a separated
machine from the applications. It receives packets from the remote hosts (that embed
the applications). Then it passes them through a simulated wireless network and sends
them back to the applications. Each ns-2 node in the simulated network represents a TAP
interface in the real network.

4.1 Emulation Modules

The ns-2 emulation facility mainly consists of two kinds of modules: network objects and
tap agents. The network objects are used to send and receive packets to and from a
network. The tap agents are connected to network objects and to ns-2 nodes. They obtain
network packets from the network objects and send them through the simulated network.
Each tap agent can be connected to at most one network object.

4.1.1 Network Object

In this setup we use the Network/IP/UDP network object. It receives Ethernet frames from
remote hosts through UDP and sends them, encapsulated into ns-2 packets through the
simulated network.

4.1.2 Tap Agent

In this setup we allocate a single network object per host to minimise the number of UDP
connections. Since multiple TAP interfaces are on the same host, multiple Tap agents
should cooperatively use the same network object. So, we implemented a new Tap agent
that maintains the multiple access of tap agents to a single network object. It is called
Agent/Tap/Coop (for cooperative) and it is a descendant of Agent/Tap.

At the creation of Agent/Tap/Coop you have to specify the ns-2 IP address of the node
on which it will be situated. For example:

set al2 [new Agent/Tap/Coop 1.2]

So, the tap agent will process only packets coming from the corresponding TAP interface.
In this example it is the interface in network 1 of host 2. Then you have to attach the
agent to a network object and to a node. For example:

$a12 network $ipudp2
$ns attach-agent $node_(1.2) $al2

These two commands attach the tap agent $a12 to the network object $ipudp and to the
ns-2 node $node_(1.2).

14

4.2 Real-Time Scheduler

The emulation facility of ns-2 should be used together with the real-time scheduler. This
scheduler synchronises the simulation virtual clock with the system time and tries to dis-
patch events at actual moments in time. In this way it ensures that the packets, passing
the simulated network, are delayed a proper amount of time. The real-time scheduler in
ns-2 is used with the commands:

set ns [new Simulator]
$ns use-scheduler RealTime

4.2.1 Delayed Execution

The real-time scheduler however introduces a problem of delayed execution of events. This
comes simply because the software implementation of the wireless model in ns-2 can hardly
execute with the same speed as hardware devices. The delays accumulate during simulation
and can lead to strange behaviour of the network protocols inside ns-2. One effect is for
example the change of chronological order of ns-2 events, which leads to false performance
of the IEEE 802.11 protocol.

We developed several techniques to increase the real-time performance of ns-2 and they
are described in the paper [3]. These are mainly changes to the real-time scheduler - in
synchronisation with the system time and in execution of events.

4.2.2 Transmission Time Compensation

The applications in the current setup are distributed in a network. Then the packets that
they send are delivered to ns-2 not instantly, but with a certain delay from the network.
So, when the ns-2 receives a packet from an application, it has already been sent in some
moment in the past real-time. This delay happens also in the other direction (from the
simulator to the applications). If a simulated node receives a packet in some moment
in time, the corresponding application will receive it after a transmission delay. So, the
transmission times in the network interfere in the end-to-end transmission time between
applications in the emulated wireless network.

If we knew the exact transmission times from and to the applications, we could consider
them in the simulation model and compensate these delays. We can do this by simply in-
serting external events in the simulator past with some offset from the current time. Then,
the reception of the packet within the simulator will happen sooner, but the transmission
times will make the end-to-end transmission time between applications the same as it is
computed by the model.

However, we can hardly measure this offset in the past. First because we need syn-
chronised clocks to measure the time from the applications to the simulator. And second,
because in the other direction (simulator -> applications) it is not possible to measure the
transmission time before the packet is actually transmitted. So, we have to estimate the
offset.

15

We do a simple estimation by sending ICMP echo requests with different sizes. Then,
for each packet size we compute the average round trip time and use it as an offset in the
past for that packet size. This information is provided to the Cooperative TAP agents,
described in section 4.1.2. When a TAP agent receives a packet, it looks into a table for
the closest packet size present there and takes the corresponding offset. Then it inserts the
event “sent packet” in the past of the simulator.

One can of course argue that by inserting events in the past we can produce causality
errors in the model (i.e. errors caused by not-in-order execution of events). However,
the system is a wvirtual environment for applications. Important is here the effect of the
emulated wireless network on the applications. Therefore, small errors in the execution of
the model can be tolerated. By small here we mean errors that do not have a noticeable
effect on the properties of the wireless network.

OTecl Syntax: The Agent/Tap/Coop (section 4.1.2) has the task to provide the scheduler
with the transmission time of each packet. Therefore the Tap agent has the following two
commands:

1. $Agent set packet granularity <number>

This command specifies the granularity of the packet size in the lookup table of
the Tap agent. It means that neighbouring records in the table have difference in
the packet size in <number> bytes. The smaller the granularity, the bigger is the
accuracy of the estimated transmission time of the packets.

Example usage:
$a12 set_packet_granularity 100

2. $Agent set packet delay <packet size> <delay>

This command sets the measured delay in seconds for the transmission of packet of
the given size. When the Tap agent becomes a packet from a remote application, it
assigns the delay of the closest packet size in the table.

Example usage:
$a12 set_packet_delay 250 0.000157

This command sets a delay of 157ms for the packets of size 250 bytes.

Note that you do not need to set packet granularity and packet delays for all the Tap agents.
It is enough to set these parameters only for one agent, because these information is shared
among them. We provide a perl script netdelays.pl which can be used to compute delays
for different packet sizes and specified granularity. The script uses ICMP echo requests to
measure round trip times and we assume that they have relatively small differences to the
UDP round trip times. The script netdelays.pl generates a pdelays.tcl file, which you
can directly include in your simulation script. If you avoid the above commands, the Tap
agents will not apply any time compensation technique.

16

4.3 Trace Extensions

The trace subsystem in ns-2 is used to store event information in log files. The current
implementation buffers the trace data in main memory and then performs disk writes at
certain periods. These writes block the simulator and may cause serious delays in execution
of events in real-time mode.

To improve the real-time performance of ns-2 we developed a new trace subsystem.
Here the simulator process only stores trace data in main memory and another low priority
process empties the buffer when the simulator has nothing to do. To use the main memory
efficiently and reduce disk writes in the system during simulation we perform in-memory
compression of the trace file with the z1lib library [4]. In this case the output of the
simulator is a file in gzip format.

In order to use this trace system, first you have to specify a standard trace file with
the trace-all command. Then create an instance of the BaseTrace/ShmGZ object to
redirect the output from the standard file to the new trace system. The constructor of the
BaseTrace/ShmGZ object has the following syntax:

new BaseTrace/ShmGZ <File Name> <Shm Size> <Max Line> <Compressed Buffer>

e <File Name> is the output file name

e <Shm Size> determines the number of trace lines which can be stored in the buffer be-
tween the simulator and the logging process. This number is computed as 2<hmSize>
For example <Shm Size> of 10 determines a buffer which can store up to 1024 trace
lines.

e <Max Line> is the expected maximum length of a line in the ns-2 trace file.

e <Compressed Buffer> is the size of memory in bytes, used to buffer the compressed
output file. If you use for example 104857600 (100MB), you could easily fit up to
1GB text information there, because the trace files contain many similar patterns
and the z1ib library compresses them significantly.

For example you can use this trace system by these commands:

set tracefd [open dummy.tr w]
$ns trace-all $tracefd
set tr0 [new BaseTrace/ShmGZ output.tr.gz 16 400 104857600]

Here we first create a dummy trace file and point all the trace data to it. After that
we create a BaseTrace/ShmGZ object, which redirects the output to the compressed file
output.tr.gz. The trace object here can hold up to 65536 lines of maximum 400 length
in the buffer between the simulator and the low priority log process. The buffer for the
in-memory compressed file is 100MB.

Note: The trace system uses IPC shared memory for communication between the
simulator and the logger. The requested shared memory segment in the above example is
25MB and most systems will require special privileges(root) for this allocation.

17

4.4 Sample NS-2 Emulation Script

Appendix A contains an example ns-2 emulation script. It creates a wireless ad-hoc network
with six nodes inside. These 6 nodes correspond to 6 TAP interfaces on two hosts. It uses
the ns-2 extensions, described in this section. It uses a Tap/Coop and a node in ns-2 to
represent each virtual Ethernet TAP interface.

18

5 Disadvantages

This section describes the known drawbacks in the current implementation, and gives
points for further investigation.

1. Unreliable transport protocol

In the current implementation we use UDP to transport the Ethernet frames from
the remote hosts (applications) to the simulator, and on the other way round. UDP
is fast and has a small overhead, but it is an unreliable protocol. Packets may be
reordered, or even lost.

That is why our solution has to be used only in high throughput and low error rate
networks (like Fast Ethernet LANs) to reduce the probability of errors. In this case
if the applications do not flood the network, the packets lost in the LAN due to UDP
will be much smaller than the packets lost in the emulated wireless network.

2. Serialised Broadcasts

In the current implementation, each host accommodates several TAP interfaces and
each interface corresponds to a node in ns-2. When several nodes receive the same
broadcast packet it is sent through the real network via UDP for each per TAP
interface. In the model all the broadcasts are should be received at nearly at the
same time (due to small propagation delay of the network). But the broadcasts sent
to the applications are sent one by one through the UDP socket, and so they are
serialised.

A more effective solution would be to send the broadcast once and then deliver it to
each TAP interface locally. Care must be taken however that some nodes might not
receive packets due to transmission errors. A list of all receivers should be also sent
together with the packet.

3. Execution of past events

When we compensate the transmission delay from the network, we insert events in
the simulator past. On the other hand we do not do any rollback of the simulator,
because it is quite a complicated procedure (as it is described in [5]). So, we execute
past events with the current state of the model. This can cause an incorrect execution
of the model.

For example, if the medium is free now, but was not free in the true moment of
sending, the packet will be sent with no delay regardless of the state of the medium
in the past. On the other hand, if the medium is busy now, but was free in the
past the packet will be delayed with no reason i.e. it could have been sent in its
true moment. We assume that these errors diminish in the average case with a large
number of packets and do not affect considerably the statistical results.

19

The presented system is a virtual environment, i. e. it mimics a wireless network among
a set of applications. Important here is to see the effect of the wireless network on the
applications. So, errors in the execution of the model, that do not have a noticeable impact
on of the wireless network (as it is seen by the applications), can be tolerated.

20

References

[1] The Network Simulator - ns-2 http://www.isi.edu/nsnam/ns/.

[2] Universal TUN/TAP driver http://vtun.sf.net/tun/.

|3] Daniel Mahrenholz, Svilen Ivanov. Real-time Network Emulation with ns-2.
[4] Zlib home site: http://www.gzip.org/z1ib/.

[5] Fujimoto, R. M. (2000). Parallel and Distributed Simulation Systems, Wiley Inter-
science.

21

A NS-2 Emulation Script

An example script for the usage of ns-2 in emulation mode
with distributed applications:
Uses:

1.

2.
3.

Network/IP/UDP agents to receive Ethernet frames

Tap/Coop agents to cooperatively use a Network object
In-memory compression of the trace file

Common variables

set
set
set
set
set
set
set
set
set
set
set
set
set

set
$ns
set
$ns
set

set

i
i
#
#
from remote hosts via UDP
#
#
#
#

val(chan) Channel/WirelessChannel ;# Channel Type
val(prop) Propagation/TwoRayGround ;# radio-propagation model
val(netif) Phy/WirelessPhy ;# network interface type
val(mac) Mac/802_11 ;# MAC type

val(ifq) Queue/DropTail/PriQueue ;# interface queue type
val(1l) LL ;# link layer type

val(ant) Antenna/OmniAntenna ;# antenna model
val(ifqlen) 50 ;# max packet in ifq

val(x) 100 ;# x range in meters

val(y) 100 ;# y range in meters

val(rp) DumbAgent ;# routing protocol

val(nn) 6 ;# number of mobile nodes

val(stime) 30.0 ;# simulation time

ns [new Simulator]

use-scheduler RealTime

tracefd [open nsemu_dstapp.tr w]

trace-all $tracefd

tr0 [new BaseTrace/ShmGZ nsemu_dstapp.tr.gz 16 400 104857600]

topo [new Topographyl

$topo load_flatgrid $val(x) $val(y)

Create GOD
create-god $val(nn)
Create channel

set

chan_1_ [new $val(chan)]

Configure nodes

$ns

node-config -adhocRouting $val(rp) \

-11Type $val(1l) \
-macType $val(mac) \

22

-ifqType $val(ifq) \
-ifqlen $val(ifqlen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-movementTrace OFF \
-channel $chan_1_

$ns set-address-format hierarchical 2 24 8

proc setup_node {id x y z color} {
#Procedure to configure an ns-2 node initially
global ns node_

set node_($id) [$ns node $id]
$node_($id) set X_ $x

$node_($id) set Y_ $y

$node_($id) set Z_ $=z

$node_($id) color $color

$ns at 0 "$node_($id) setdest $x $y 0"
$ns at 0 "$node_($id) color $color"
$node_($id) random-motion O

}

setup_node 1.2 10 20 0 "red"
setup_node 1.3 10 30 0 "red"
setup_node 2.2 20 20 0 "red"
setup_node 2.3 20 30 0 "red"
setup_node 3.2 30 20 0 "red"
setup_node 3.3 30 30 0 "red"

#Network object IPUDP

set ipudp2 [new Network/IP/UDP]
$ipudp2 open readwrite

$ipudp2 bind 192.168.1.1 10002
$ipudp2 connect 192.168.1.2 10000

set ipudp3 [new Network/IP/UDP]
$ipudp3 open readwrite

$ipudp3 bind 192.168.1.1 10003

23

$ipudp3 connect 192.168.1.3 10000

#Tap Agent for each node

set al2 [new Agent/Tap/Coop 1.2]
set al3 [new Agent/Tap/Coop 1.3]
set a22 [new Agent/Tap/Coop 2.2]
set a23 [new Agent/Tap/Coop 2.3]
set a32 [new Agent/Tap/Coop 3.2]
set a33 [new Agent/Tap/Coop 3.3]

source "pdelays.tcl"

puts "install nets into taps..."
#Assign network objects to TAP agents
$a12 network $ipudp2

$a22 network $ipudp2

$a32 network $ipudp2

$a13 network $ipudp3
$a23 network $ipudp3
$a33 network $ipudp3

#Assign TAP agents to ns-2 nodes

$ns attach-agent $node_(1.2) $al2
$ns attach-agent $node_(1.3) $al3
$ns attach-agent $node_(2.2) $a22
$ns attach-agent $node_(2.3) $a23
$ns attach-agent $node_(3.2) $a32
$ns attach-agent $node_(3.3) $a33

$ns at $val(stime) "stop"
$ns at $val(stime) "puts \"NS EXITING ...\" ; $ns halt"

proc stop {} {

global ns tracefd ipudp2 ipudp3
$ns flush-trace

close $tracefd

$ipudp2 close

$ipudp3 close

}
puts "okey"
$ns run

24

